Abstract The interaction between two square palladium (II) dianions PdX42−(X=Cl, Br) is evaluated by crystal study and analyzed by quantum chemical means. The arrangement within the crystal between each pair of PdX42−neighbors is suggestive of a Pd⋅⋅⋅X noncovalent bond, which is verified by a battery of computational protocols. While the potential between these two bare dianions is computed to be highly repulsive, the introduction of even just two counterions makes this interaction attractive, as does the presence of a constellation of point charges. It is concluded that there is indeed a stabilizing Pd⋅⋅⋅X bond, but it is incapable of overcoming the strong coulombic repulsive force between two dianions. While the QTAIM, NBO, and NCI tools can indicate the presence of a noncovalent bond, they are unable to distinguish an attractive from a repulsive interaction.
more »
« less
The role of attractive dispersion interaction in promoting the catalytic activity of asymmetric hydrogenation
This study proves Wanbin Zhang's finding that weak attractive interactions between substrate and ligand play an important role in metal-catalyzed asymmetric hydrogenations and shows that the dispersion interaction is the major attractive interaction.
more »
« less
- Award ID(s):
- 2153972
- PAR ID:
- 10505403
- Publisher / Repository:
- Royal Society of Chemistry
- Date Published:
- Journal Name:
- Organic Chemistry Frontiers
- Volume:
- 10
- Issue:
- 14
- ISSN:
- 2052-4129
- Page Range / eLocation ID:
- 3485 to 3490
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Symmetry-adapted perturbation theory (SAPT) is a popular and versatile tool to compute and decompose noncovalent interaction energies between molecules. The intramolecular SAPT (ISAPT) variant provides a similar energy decomposition between two nonbonded fragments of the same molecule, covalently connected by a third fragment. In this work, we explore an alternative approach where the noncovalent interaction is singled out by a range separation of the Coulomb potential. We investigate two common splittings of the 1/r potential into long-range and short-range parts based on the Gaussian and error functions, and approximate either the entire intermolecular/interfragment interaction or only its attractive terms by the long-range contribution. These range separation schemes are tested for a number of intermolecular and intramolecular complexes. We find that the energy corrections from range-separated SAPT or ISAPT are in reasonable agreement with complete SAPT/ISAPT data. This result should be contrasted with the inability of the long-range multipole expansion to describe crucial short-range charge penetration and exchange effects; it shows that the long-range interaction potential does not just recover the asymptotic interaction energy but also provides a useful account of short-range terms. The best consistency is attained for the error-function separation applied to all interaction terms, both attractive and repulsive. This study is the first step toward a fragmentation-free decomposition of intramolecular nonbonded energy.more » « less
-
Colloidal gelation phase diagram has been traditionally characterized using three key factors: particle volume fraction, strength of attraction, and range of attraction. While there's a rich body of literature on the role of attraction strength and particle volume fraction, majority of studies have been limited to short range interactions. Using Brownian dynamics simulations, we explored the effect that the range of attractions has on the microstructure and dynamics of both weakly and strongly attractive colloidal systems. Although gelation occurs significantly faster at high attraction strength, by an order of magnitude compared to low strength, we did not observe any clear trend in gelation-rate with respect to a change in the range of interaction. However, as the attraction range increases in both systems, the final structure undergoes a transition from a single connected network to a fluid of dense clusters. This results in a new gelation phase boundary for long range attractive colloids.more » « less
-
ABSTRACT The interaction energies within noncovalent bonds can be partitioned into electrostatic, induction, and dispersive attractive elements. A set of complexes comprising halogen, chalcogen, pnicogen, and tetrel bonds, are studied by quantum chemical calculations to assess how each of these components can be understood on the basis of properties of the constituent monomers. The variation of the electrostatic term, which accounts for over half of the total attractive energy, can be approximated, but with only modest accuracy, by combination of the maximum and minimum of the electrostatic potential on the two subunits. Induction represents a smaller contribution to the total, but is well connected with the NBO interorbital transfer energy, as opposed to the reciprocal of the HOMO‐LUMO gap which behaves quite differently than IND. Of the various AIM parameters, both the bond critical point density and energy density are closely related to the full interaction energy.more » « less
-
Abstract This study computationally investigates the elastic interaction of two pressurized cylindrical cavities in a 2D hyperelastic medium. Unlike linear elasticity, where interactions are exclusively attractive, nonlinear material models (neo-Hookean, Mooney–Rivlin, Arruda–Boyce) exhibit both attraction and repulsion between the cavities. A critical pressure-shear modulus ratio governs the transition, offering a pathway to manipulate cavity configurations through material and loading parameters. At low ratios, the interactions are always attractive, while at high ratios, both attractive and repulsive regimes exist depending on the separation between the cavities. The effect of the strain-stiffening on these interactions is also analyzed. These insights bridge theoretical and applied mechanics, with implications for soft material design and subsurface engineering.more » « less
An official website of the United States government

