Memcomputing is a novel computing paradigm beyond the von–Neumann one. Its digital version is designed for the efficient solution of combinatorial optimization problems, which emerge in various fields of science and technology. Previously, the performance of digital memcomputing machines (DMMs) was demonstrated using software simulations of their ordinary differential equations. Here, we present the first hardware realization of a DMM algorithm on a low-cost FPGA board. In this demonstration, we have implemented a Boolean satisfiability problem solver. To optimize the use of hardware resources, the algorithm was partially parallelized. The scalability of the present implementation is explored and our FPGA-based results are compared to those obtained using a python code running on a traditional (von–Neumann) computer, showing one to two orders of magnitude speed-up in time to solution. This initial small-scale implementation is projected to state-of-the-art FPGA boards anticipating further advantages of the hardware realization of DMMs over their software emulation.
more »
« less
Brain-Like Features of MemComputing Machines
MemComputing is a new model of computation that exploits the non-equilibrium property—we call “memory”—of any physical system to respond to external perturbations by keeping track of how it has reacted at previous times. Its digital, scalable version maps a finite string of symbols into a finite string of symbols. In this paper, I will discuss some analogies of the operation of MemComputing machines—in general, and digital in particular—with a few physical properties of the biological brain. These analogies could be a source of inspiration to improve on the design of these machines. In turn, they could suggest new directions of study in (computational) neuroscience.
more »
« less
- Award ID(s):
- 2229880
- PAR ID:
- 10505636
- Publisher / Repository:
- IEEE
- Date Published:
- Journal Name:
- 2023 12th International Conference on Modern Circuits and Systems Technologies
- ISBN:
- 979-8-3503-2107-4
- Page Range / eLocation ID:
- 1 to 4
- Format(s):
- Medium: X
- Location:
- Athens, Greece
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Quantum computing employs some quantum phenomena to process information. It has been hailed as the future of computing but it is plagued by serious hurdles when it comes to its practical realization. MemComputing is a new paradigm that instead employs non-quantum dynamical systems and exploits time non-locality (memory) to compute. It can be efficiently emulated in software and its path towards hardware is more straightforward. I will discuss some analogies between these two computing paradigms, and the major differences that set them apart.more » « less
-
Summary Digital MemComputing machines (DMMs), which employ nonlinear dynamical systems with memory (time non‐locality), have proven to be a robust and scalable unconventional computing approach for solving a wide variety of combinatorial optimization problems. However, most of the research so far has focused on the numerical simulations of the equations of motion of DMMs. This inevitably subjects time to discretization, which brings its own (numerical) issues that would be otherwise absent in actual physical systems operating in continuous time. Although hardware realizations of DMMs have been previously suggested, their implementation would require materials and devices that are not so easy to integrate with traditional electronics. Addressing this, our study introduces a novel hardware design for DMMs, utilizing readily available electronic components. This approach not only significantly boosts computational speed compared to current models but also exhibits remarkable robustness against additive noise. Crucially, it circumvents the limitations imposed by numerical noise, ensuring enhanced stability and reliability during extended operations. This paves a new path for tackling increasingly complex problems, leveraging the inherent advantages of DMMs in a more practical and accessible framework.more » « less
-
We present a fully parallel digital memcomputing solver implemented on a field-programmable gate array (FPGA) board. For this purpose, we have designed an FPGA code that solves the ordinary differential equations associated with digital memcomputing in parallel. A feature of the code is the use of only integer-type variables and integer constants to enhance optimization. Consequently, each integration step in our solver is executed in 96 ns. This method was utilized for difficult instances of the Boolean satisfiability (SAT) problem close to a phase transition, involving up to about 150 variables. Our results demonstrate that the parallel implementation reduces the scaling exponent by about 1 compared to a sequential C++ code on a standard computer. Additionally, compared to C++ code, we observed a time-to-solution advantage of about three orders of magnitude. Given the limitations of FPGA resources, the current implementation of digital memcomputing will be especially useful for solving compact but challenging problems.more » « less
-
Streaming codes take a string of source symbols as input and output a string of coded symbols in real time, which effectively eliminate the queueing delay and are regarded as a promising scheme for low latency communications. Aiming at quantifying the fundamental latency performance of random linear streaming codes (RLSCs) over i.i.d. symbol erasure channels, this work derives the exact error probability under, simultaneously, the finite memory length and finite decoding deadline constraints. The result is then used to examine the tradeoff among memory length (complexity), decoding deadline (delay), and error probability (reliability) of RLSCs for the first time in the literature. Two critical observations are made: (i) Too much memory can adversely impact the performance under a finite decoding deadline constraint, a surprising finding not captured by the traditional wisdom that large memory length monotonically improves the performance in the asymptotic regime; (ii) The end-to-end delay of the RLSC is roughly 50% of that of the MDS block code when under identical code rate and error probability requirements. This implies that switching from block codes to RLSCs not only eliminates the queueing delay (thus 50%) but also has little negative impact on the error probability.more » « less
An official website of the United States government

