Given two unital C*-algebras equipped with states and a positive operator in the enveloping von Neumann algebra of their minimal tensor product, we define three parameters that measure the capacity of the operator to align with a coupling of the two given states. Further, we establish a duality formula that shows the equality of two of the parameters for operators in the minimal tensor product of the relevant C*-algebras. In the context of abelian C*-algebras, our parameters are related to quantitative versions of Arveson's null set theorem and to dualities considered in the theory of optimal transport. On the other hand, restricting to matrix algebras we recover and generalize quantum versions of Strassen's theorem. We show that in the latter case our parameters can detect maximal entanglement and separability. 
                        more » 
                        « less   
                    
                            
                            On Tsirelson pairs of C*-algebras
                        
                    
    
            We introduce the notion of a Tsirelson pair of C*-algebras, which is a pair of C*-algebras for which the space of quantum strategies obtained by using states on the minimal tensor product of the pair is dense in the space of quantum strategies obtained by using states on the maximal tensor product. We exhibit a number of examples of such pairs that are “nontrivial” in the sense that the minimal tensor product and the maximal tensor product of the pair are not isomorphic. For example, we prove that any pair containing a C*-algebra with Kirchberg’s QWEP property is a Tsirelson pair. We then introduce the notion of a C*-algebra with the Tsirelson property (TP) and establish a number of closure properties for this class. We also show that the class of C*-algebras with the TP forms an elementary class (in the sense of model theory), but that this class does not admit an effective axiomatization. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2054477
- PAR ID:
- 10505701
- Publisher / Repository:
- World Scientific
- Date Published:
- Journal Name:
- Reviews in Mathematical Physics
- Volume:
- 35
- Issue:
- 08
- ISSN:
- 0129-055X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We prove that large classes of algebras in the framework of root of unity quantum cluster algebras have the structures of maximal orders in central simple algebras and Cayley–Hamilton algebras in the sense of Procesi. We show that every root of unity upper quantum cluster algebra is a maximal order and obtain an explicit formula for its reduced trace. Under mild assumptions, inside each such algebra we construct a canonical central subalgebra isomorphic to the underlying upper cluster algebra, such that the pair is a Cayley–Hamilton algebra; its fully Azumaya locus is shown to contain a copy of the underlying cluster A \mathcal {A} -variety. Both results are proved in the wider generality of intersections of mixed quantum tori over subcollections of seeds. Furthermore, we prove that all monomial subalgebras of root of unity quantum tori are Cayley–Hamilton algebras and classify those ones that are maximal orders. Arbitrary intersections of those over subsets of seeds are also proved to be Cayley–Hamilton algebras. Previous approaches to constructing maximal orders relied on filtration and homological methods. We use new methods based on cluster algebras.more » « less
- 
            Abstract The problem of whether the cohomological support map of a finite dimensional Hopf algebra has the tensor product property has attracted a lot of attention following the earlier developments on representations of finite group schemes. Many authors have focused on concrete situations where positive and negative results have been obtained by direct arguments. In this paper we demonstrate that it is natural to study questions involving the tensor product property in the broader setting of a monoidal triangulated category. We give an intrinsic characterization by proving that the tensor product property for the universal support datum is equivalent to complete primeness of the categorical spectrum. From these results one obtains information for other support data, including the cohomological one. Two theorems are proved giving compete primeness and non-complete primeness in certain general settings. As an illustration of the methods, we give a proof of a recent conjecture of Negron and Pevtsova on the tensor product property for the cohomological support maps for the small quantum Borel algebras for all complex simple Lie algebras.more » « less
- 
            Abstract We consider finite-dimensional Hopf algebras $$u$$ that admit a smooth deformation $$U\to u$$ by a Noetherian Hopf algebra $$U$$ of finite global dimension. Examples of such Hopf algebras include small quantum groups over the complex numbers, restricted enveloping algebras in finite characteristic, and Drinfeld doubles of height $$1$$ group schemes. We provide a means of analyzing (cohomological) support for representations over such $$u$$, via the singularity categories of the hypersurfaces $U/(f)$ associated with functions $$f$$ on the corresponding parametrization space. We use this hypersurface approach to establish the tensor product property for cohomological support, for the following examples: functions on a finite group scheme, Drinfeld doubles of certain height 1 solvable finite group schemes, bosonized quantum complete intersections, and the small quantum Borel in type $$A$$.more » « less
- 
            We generalize Jones’ planar algebras by internalising the notion to a pivotal braided tensor category . To formulate the notion, the planar tangles are now equipped with additional ‘anchor lines’ which connect the inner circles to the outer circle. We call the resulting notion ananchored planar algebra. If we restrict to the case when is the category of vector spaces, then we recover the usual notion of a planar algebra. Building on our previous work on categorified traces, we prove that there is an equivalence of categories between anchored planar algebras in and pivotal module tensor categories over equipped with a chosen self-dual generator. Even in the case of usual planar algebras, the precise formulation of this theorem, as an equivalence of categories, has not appeared in the literature. Using our theorem, we describe many examples of anchored planar algebras.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    