skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Chiral spin liquid in a Z_3 Kitaev model
We study a Z_3 Kitaev model on the honeycomb lattice with nearest neighbor interactions. Based on matrix product state simulations and symmetry considerations, we find evidence that, with ferromagnetic isotropic couplings, the model realizes a chiral spin liquid, characterized by a possible U(1)_{12} chiral topological order. This is supported by simulations on both cylinder and strip geometries. On infinitely long cylinders with various widths, scaling analysis of entanglement entropy and maximal correlation length suggests that the model has a gapped two-dimensional bulk. The topological entanglement entropy is extracted and found to be in agreement with the U(1)_{12} topological order. On infinitely long strips with moderate widths, we find the model is critical with a central charge consistent with the chiral edge theory of the U(1)_{12} topological phase. We conclude by discussing several open questions.  more » « less
Award ID(s):
1846109
PAR ID:
10505737
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
APS
Date Published:
Journal Name:
Physical Review B
Volume:
109
Issue:
15
ISSN:
2469-9950
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the entanglement dynamics of quantum automaton (QA) circuits in the presence of U(1) symmetry. We find that the second Rényi entropy grows diffusively with a logarithmic correction as t ln t , saturating the bound established by Huang \cite{Huang_2020}. Thanks to the special feature of QA circuits, we understand the entanglement dynamics in terms of a classical bit string model. Specifically, we argue that the diffusive dynamics stems from the rare slow modes containing extensively long domains of spin 0s or 1s. Additionally, we investigate the entanglement dynamics of monitored QA circuits by introducing a composite measurement that preserves both the U(1) symmetry and properties of QA circuits. We find that as the measurement rate increases, there is a transition from a volume-law phase where the second Rényi entropy persists the diffusive growth (up to a logarithmic correction) to a critical phase where it grows logarithmically in time. This interesting phenomenon distinguishes QA circuits from non-automaton circuits such as U(1)-symmetric Haar random circuits, where a volume-law to an area-law phase transition exists, and any non-zero rate of projective measurements in the volume-law phase leads to a ballistic growth of the Rényi entropy. 
    more » « less
  2. Gaussian boson sampling, a computational model that is widely believed to admit quantum supremacy, has already been experimentally demonstrated and is claimed to surpass the classical simulation capabilities of even the most powerful supercomputers today. However, whether the current approach limited by photon loss and noise in such experiments prescribes a scalable path to quantum advantage is an open question. To understand the effect of photon loss on the scalability of Gaussian boson sampling, we analytically derive the asymptotic operator entanglement entropy scaling, which relates to the simulation complexity. As a result, we observe that efficient tensor network simulations are likely possible under the Nout ~ \sqrt(N) scaling of the number of surviving photons Nout in the number of input photons N. We numerically verify this result using a tensor network algorithm with U(1) symmetry, and we overcome previous challenges due to the large local Hilbert-space dimensions in Gaussian boson sampling with hardware acceleration. Additionally, we observe that increasing the photon number through larger squeezing does not increase the entanglement entropy significantly. Finally, we numerically find the bond dimension necessary for fixed accuracy simulations, providing more direct evidence for the complexity of tensor networks. 
    more » « less
  3. In quantum many-body spin systems, the interplay between the entangling effect of multiqubit Pauli measurements and the disentangling effect of single-qubit Pauli measurements may give rise to two competing effects. By introducing a randomized measurement pattern with such bases, a phase transition can be induced by altering the ratio between them. In this work, we numerically investigate a measurement-based model associated with the Fradkin-Shenker Hamiltonian that encompasses the deconfining, confining, and Higgs phases. We determine the phase diagram in our measurement-only model by employing entanglement measures. For the bulk topological order, we use the topological entanglement entropy. We also use the mutual information between separated boundary regions to diagnose the boundary phase transition associated with the Higgs or the bulk symmetry-protected topological (SPT) phase. We observe the structural similarity between our phase diagram and the one in the standard quantum Hamiltonian formulation of the Fradkin-Shenker model with the open rough boundary. First, a deconfining phase is detected by nonzero and constant topological entanglement entropy. Second, we find a (boundary) phase transition curve separating the Higgs=SPT phase from the rest. In certain limits, the topological phase transitions reside at the critical point of the formation of giant homological cycles in the bulk three-dimensional (3D) space-time lattice, as well as the bond percolation threshold of the boundary 2D space-time lattice when it is effectively decoupled from the bulk. Additionally, there are analogous mixed-phase properties at a certain region of the phase diagram, emerging from how we terminate the measurement-based procedure. Our findings pave an alternative pathway to study the physics of Higgs=SPT phases on quantum devices in the near future. 
    more » « less
  4. Topologically ordered phases in 2 + 1 dimensions are generally characterized by three mutually related features: fractionalized (anyonic) excitations, topological entanglement entropy, and robust ground state degeneracy that does not require symmetry protection or spontaneous symmetry breaking. Such a degeneracy is known as topological degeneracy and can be usually seen under the periodic boundary condition regardless of the choice of the system sizes L1 and L2 in each direction. In this work, we introduce a family of extensions of the Kitaev toric code to N level spins (N ≥ 2). The model realizes topologically ordered phases or symmetry-protected topological phases depending on the parameters in the model. The most remarkable feature of topologically ordered phases is that the ground state may be unique, depending on L1 and L2, despite that the translation symmetry of the model remains unbroken. Nonetheless, the topological entanglement entropy takes the nontrivial value. We argue that this behavior originates from the nontrivial action of translations permuting anyon species. 
    more » « less
  5. Abstract Topologically ordered phases of matter elude Landau’s symmetry-breaking theory, featuring a variety of intriguing properties such as long-range entanglement and intrinsic robustness against local perturbations. Their extension to periodically driven systems gives rise to exotic new phenomena that are forbidden in thermal equilibrium. Here, we report the observation of signatures of such a phenomenon—a prethermal topologically ordered time crystal—with programmable superconducting qubits arranged on a square lattice. By periodically driving the superconducting qubits with a surface code Hamiltonian, we observe discrete time-translation symmetry breaking dynamics that is only manifested in the subharmonic temporal response of nonlocal logical operators. We further connect the observed dynamics to the underlying topological order by measuring a nonzero topological entanglement entropy and studying its subsequent dynamics. Our results demonstrate the potential to explore exotic topologically ordered nonequilibrium phases of matter with noisy intermediate-scale quantum processors. 
    more » « less