skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Revisiting the Replica Trick: Competition Between Spin Glass and Conventional Order
There is an ambiguity in how to apply the replica trick to spin glass models which have additional order parameters unrelated to spin glass order—with respect to which quantities does one minimize vs maximize the action, and in what sequence? Here we show that the correct procedure is to first maximize with respect to “replica” order parameters, and then minimize with respect to “conventional” order parameters. With this result, we further elucidate the relationship between quenched free energies, annealed free energies, and replica order—it is possible for the quenched and annealed free energies to differ even while all replica order parameters remain zero.  more » « less
Award ID(s):
2120757
PAR ID:
10505869
Author(s) / Creator(s):
;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Journal of Statistical Physics
Volume:
190
Issue:
7
ISSN:
1572-9613
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We present a 23Na nuclear spin dynamics model for interpreting nuclear magnetic resonance (NMR) spin-lattice relaxation and central linewidth data in the invert glass system Na4P2S7-xOx, 0 ≤ x ≤ 7. The glassy nature of this material results in variations in local Na+ cation environments that may be described by a Gaussian distribution of activation energies. A consistent difference between the mean activation energies determined by NMR and DC conductivity measurements was observed, and interpreted using a percolation theory model. From this, the Nasingle bondNa coordination number in the sodium cation sublattice was obtained. These values were consistent with jumps through tetrahedral faces of the sodium cages for the sulfur rich glasses, x < 5, consistent with proposed models of their short range order (SRO) structures. From NMR spin-echo measurements, we determined the Nasingle bondNa second moment M2 resulting from the Nasingle bondNa magnetic dipole interaction of nearest neighbors. Values of M2 obtained as a function of sodium number density N were in agreement with models for uniform sodium distribution, indicating that these invert glass systems form so as to maximize the average Nasingle bondNa distance. A simple Coulombic attraction model between Na+ cation and X (=S−, O−) anion was applied to calculate the activation energy. In the range 1.5 ≤ x ≤ 7, an increase in activation energy with increasing oxygen content x occurred, and was consistent with the decrease in average anionic radius, and the increase in Coulombic attraction. For small oxygen additions, 0 ≤ x ≤ 1.5, the suggested minimum at low oxygen concentration seen in the activation energies obtained from DC conductivity data is not evident in the model. 
    more » « less
  2. We study a 2D measurement-only random circuit motivated by the Bacon-Shor error correcting code. We find a rich phase diagram as one varies the relative probabilities of measuring nearest-neighbor Pauli XX and ZZ check operators. In the Bacon-Shor code, these checks commute with a group of stabilizer and logical operators, which therefore represent conserved quantities. Described as a subsystem symmetry, these conservation laws lead to a continuous phase transition between an X-basis and Z-basis spin-glass order. The two phases are separated by a critical point where the entanglement entropy between two halves of an L × L system scales as L ln L, a logarithmic violation of the area law. We generalize to a model where the check operators break the subsystem symmetries (and the Bacon-Shor code structure). In tension with established heuristics, we find that the phase transition is replaced by a smooth crossover, and the X - and Z -basis spin-glass orders spatially coexist. Additionally, if we approach the line of subsystem symmetries away from the critical point in the phase diagram, some spin-glass order parameters jump discontinuously. 
    more » « less
  3. Motivated by the observation of the storage of excess elastic free energy -- prestress in cross linked semiflexible filament networks, we consider the problem of the conformational statistics of a single semiflexible polymer in a quenched random potential. The random potential, which represents the effect of cross linking to other filaments is assumed to have a finite correlation length and mean strength. We examine the statistical distribution of curvature in the limit that the filaments are much shorter than their thermal persistence length. We compare our theoretical predictions to finite element Brownian dynamics simulations. Lastly we comment on the validity of replica field techniques in addressing these questions. 
    more » « less
  4. Nuclear magnetic resonance provides a wealth of information about the magnetic and nematic degrees of freedom in the iron-based superconductors. A striking observation is that the spin lattice relaxation rate is inhomogeneous with a standard deviation that correlates with the nematic susceptibility. Moreover, the spin lattice relaxation is strongly affected by uniaxial strain, and in doped samples it depends sensitively upon the history of the applied strain. These observations suggest that quenched strain fields associated with doping atoms induce a nematic glass in the iron pnictide materials. 
    more » « less
  5. Given the fundamental importance of combinatorial optimization across many diverse domains, there has been widespread interest in the development of unconventional physical computing architectures that can deliver better solutions with lower resource costs. However, a theoretical understanding of their performance remains elusive. We develop such understanding for the case of the coherent Ising machine (CIM), a network of optical parametric oscillators that can be applied to any quadratic unconstrained binary optimization problem. We focus on how the CIM finds low-energy solutions of the Sherrington-Kirkpatrick spin glass. As the laser gain of this system is annealed, the CIM interpolates between gradient descent on coupled soft spins to descent on coupled binary spins. By combining the Kac-Rice formula, the replica method, and supersymmetry breaking, we develop a detailed understanding of the evolving geometry of the high-dimensional energy landscape of the CIM as the laser gain increases, finding several phase transitions in the landscape, from flat to rough to rigid. Additionally, we develop a novel cavity method that provides a geometric interpretation of supersymmetry breaking in terms of the reactivity of a rough landscape to specific external perturbations. Our energy landscape theory successfully matches numerical experiments, provides geometric insights into the principles of CIM operation, and yields optimal annealing schedules. Published by the American Physical Society2024 
    more » « less