skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NISQ algorithm for the matrix elements of a generic observable
The calculation of off-diagonal matrix elements has various applications in fields such as nuclear physics and quantum chemistry. In this paper, we present a noisy intermediate scale quantum algorithm for estimating the diagonal and off-diagonal matrix elements of a generic observable in the energy eigenbasis of a given Hamiltonian without explicitly preparing its eigenstates. By means of numerical simulations we show that this approach finds many of the matrix elements for the one and two qubits cases. Specifically, while in the first case, one can initialize the ansatz parameters over a broad interval, in the latter the optimization landscape can significantly slow down the speed of convergence and one should therefore be careful to restrict the initialization to a smaller range of parameters.  more » « less
Award ID(s):
2120757
PAR ID:
10505878
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
SciPost
Date Published:
Journal Name:
SciPost Physics
Volume:
15
Issue:
4
ISSN:
2542-4653
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We propose and demonstrate a method for measuring the time evolution of the off-diagonal elements ρ n,n + k ( t ) of the reduced density matrix obtained from the quantum theory of the laser. The decay rates of the off-diagonal matrix element ρ n,n + k ( t ) (k = 2,3) are measured for the first time and compared with that of ρ n,n +1 ( t ), which corresponds to the linewidth of the laser. The experimental results agree with the Scully-Lamb quantum theory of the laser. 
    more » « less
  2. Abstract Data assimilation methods often also employ the same discrete dynamical model used to evolve the state estimate in time to propagate an approximation of the state estimation error covariance matrix. Four‐dimensional variational methods, for instance, evolve the covariance matrix implicitly via discrete tangent linear dynamics. Ensemble methods, while not forming this matrix explicitly, approximate its evolution at low rank from the evolution of the ensemble members. Such approximate evolution schemes for the covariance matrix imply an approximate evolution of the estimation error variances along its diagonal. For states that satisfy the advection equation, the continuity equation, or related hyperbolic partial differential equations (PDEs), the estimation error variance itself satisfies a known PDE, so the accuracy of the various approximations to the variances implied by the discrete covariance propagation can be determined directly. Experiments conducted by the atmospheric chemical constituent data assimilation community have indicated that such approximate variance evolution can be highly inaccurate. Through careful analysis and simple numerical experiments, we show that such poor accuracy must be expected, due to the inherent nature of discrete covariance propagation, coupled with a special property of the continuum covariance dynamics for states governed by these types of hyperbolic PDE. The intuitive explanation for this inaccuracy is that discrete covariance propagation involves approximating diagonal elements of the covariance matrix with combinations of off‐diagonal elements, even when there is a discontinuity in the continuum covariance dynamics along the diagonal. Our analysis uncovers the resulting error terms that depend on the ratio of the grid spacing to the correlation length, and these terms become very large when correlation lengths begin to approach the grid scale, for instance, as gradients steepen near the diagonal. We show that inaccurate variance evolution can manifest itself as both spurious loss and gain of variance. 
    more » « less
  3. Abstract The use of network analysis as a means of visualizing the off‐diagonal (misclassified) elements of a confusion matrix is demonstrated, and the potential to use the network graphs as a guide for developing hierarchical classification models is presented. A very brief summary of graph theory is described. This is followed by an explanation and code with examples of how these networks can then be used for visualization of confusion matrices. The use of network graphs to provide insight into differing model performance is also addressed. 
    more » « less
  4. We present a minimal pole method for analytically continuing matrix-valued imaginary frequency correlation functions to the real axis, enabling precise access to off-diagonal elements and thus improving the interpretation of self-energies and susceptibilities in quantum simulations. Traditional methods for matrix-valued analytic continuation tend to be either noise sensitive or make ad hoc positivity assumptions. Our approach avoids these issues via the construction of a compact pole representation with shared poles through exponential fits, expanding upon prior work focused on scalar functions. We test our method across various scenarios, including fermionic and bosonic response functions, with and without noise, and for both continuous and discrete spectra of real materials and model systems. Our findings demonstrate that this technique addresses the shortcomings of existing methodologies, such as artificial broadening and positivity violations. The paper is supplemented with a sample implementation in PYTHON. 
    more » « less
  5. The anisotropic permittivity parameters of monoclinic single crystal lutetium oxyorthosilicate, Lu2SiO5 (LSO), have been determined in the terahertz spectral range. Using terahertz generalized spectroscopic ellipsometry (THz-GSE), we obtained the THz permittivities along the a, b, and c⋆ crystal directions, which correspond to the εa, εb, and εc⋆ on-diagonal tensor elements. The associated off diagonal tensor element εac⋆ was also determined experimentally, which is required to describe LSO's optical response in the monoclinic a–c crystallographic plane. From the four tensor elements obtained in the model fit, we calculate the direction of the principal dielectric axes in the a–c plane. We find good agreement when comparing THz-GSE permittivities to the static permittivity tensors from previous infrared and density functional theory studies. 
    more » « less