skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Out-of-time-ordered correlator in the one-dimensional Kuramoto-Sivashinsky and Kardar-Parisi-Zhang equations
The out-of-time-ordered correlator (OTOC) has emerged as an interesting object in both classical and quantum systems for probing the spatial spread and temporal growth of initially local perturbations in spatially extended chaotic systems. Here, we study the (classical) OTOC and its “light cone” in the nonlinear Kuramoto-Sivashinsky (KS) equation, using extensive numerical simulations. We also show that the linearized KS equation exhibits a qualitatively similar OTOC and light cone, which can be understood via a saddle-point analysis of the linearly unstable modes. Given the deep connection between the KS (deterministic) and the Kardar-Parisi-Zhang (KPZ, which is stochastic) equations, we also explore the OTOC in the KPZ equation. While our numerical results in the KS case are expected to hold in the continuum limit, for the KPZ case it is valid in a discretized version of the KPZ equation. More broadly, our work unravels the intrinsic interplay between noise/instability, nonlinearity, and dissipation in partial differential equations (deterministic or stochastic) through the lens of OTOC.  more » « less
Award ID(s):
2120757
PAR ID:
10505919
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review E
Volume:
108
Issue:
5
ISSN:
2470-0045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As a counterpoint to classical stochastic particle methods for linear diffusion equations, such as Langevin dynamics for the Fokker-Planck equation, we develop a deterministic particle method for the weighted porous medium equation and prove its convergence on bounded time intervals. This generalizes related work on blob methods for unweighted porous medium equations. From a numerical analysis perspective, our method has several advantages: it is meshfree, preserves the gradient flow structure of the underlying PDE, converges in arbitrary dimension, and captures the correct asymptotic behavior in simulations. 
    more » « less
  2. Deterministic compartmental models for infectious diseases give the mean behaviour of stochastic agent-based models. These models work well for counterfactual studies in which a fully mixed large-scale population is relevant. However, with finite size populations, chance variations may lead to significant departures from the mean. In real-life applications, finite size effects arise from the variance of individual realizations of an epidemic course about its fluid limit. In this article, we consider the classical stochastic Susceptible-Infected-Recovered (SIR) model, and derive a martingale formulation consisting of a deterministic and a stochastic component. The deterministic part coincides with the classical deterministic SIR model and we provide an upper bound for the stochastic part. Through analysis of the stochastic component depending on varying population size, we provide a theoretical explanation of finite size effects. Our theory is supported by quantitative and direct numerical simulations of theoretical infinitesimal variance. Case studies of coronavirus disease 2019 (COVID-19) transmission in smaller populations illustrate that the theory provides an envelope of possible outcomes that includes the field data. 
    more » « less
  3. Abstract A probabilistic approach is needed to address systems with uncertainties arising in natural processes and engineering applications. For computational convenience, however, the stochastic effects are often ignored. Thus, numerical integration routines for stochastic dynamical systems are rudimentary compared to those for the deterministic case. In this work, the authors present a method to carry out stochastic simulations by using methods developed for the deterministic case. Thereby, the well-developed numerical integration routines developed for deterministic systems become available for studies of stochastic systems. The convergence of the developed method is shown and the method's performance is demonstrated through illustrative examples. 
    more » « less
  4. Stochastic geometry models have enjoyed immense success in graphics for modeling interactions of light with complex phenomena such as participating media, rough surfaces, fibers, and more. Although each of these models operates on the same principle of replacing intricate geometry by a random process and deriving the average light transport across all instances thereof, they are each tailored to one specific application and are fundamentally distinct. Each type of stochastic geometry present in the scene is firmly encapsulated in its own appearance model, with its own statistics and light transport average, and no cross-talk between different models or deterministic and stochastic geometry is possible. In this paper, we derive a theory of light transport on stochastic implicit surfaces, a geometry model capable of expressing deterministic geometry, microfacet surfaces, participating media, and an exciting new continuum in between containing aggregate appearance, non-classical media, and more. Our model naturally supports spatial correlations, missing from most existing stochastic models. Our theory paves the way for tractable rendering of scenes in which all geometry is described by the same stochastic model, while leaving ample future work for developing efficient sampling and rendering algorithms. 
    more » « less
  5. Abstract We consider particle-based stochastic reaction-drift-diffusion models where particles move via diffusion and drift induced by one- and two-body potential interactions. The dynamics of the particles are formulated as measure-valued stochastic processes (MVSPs), which describe the evolution of the singular, stochastic concentration fields of each chemical species. The mean field large population limit of such models is derived and proven, giving coarse-grained deterministic partial integro-differential equations (PIDEs) for the limiting deterministic concentration fields’ dynamics. We generalize previous studies on the mean field limit of models involving only diffusive motion, with care to formulating the MVSP representation to ensure detailed balance of reversible reactions in the presence of potentials. Our work illustrates the more general set of PIDEs that arise in the mean field limit, demonstrating that the limiting macroscopic reactive interaction terms for reversible reactions obtain additional nonlinear concentration-dependent coefficients compared to the purely diffusive case. Numerical studies are presented which illustrate that two-body repulsive potential interactions can have a significant impact on the reaction dynamics, and also demonstrate the empirical numerical convergence of solutions to the PBSRDD model to the derived mean field PIDEs as the population size increases. 
    more » « less