skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Turn-Off Fluorescent Sensor for Metal Ions Quantifies Corrosion in an Organic Solvent
We demonstrate that the corrosion of AISI 1045 medium carbon steel and pure aluminum can be quantified by the turn-off fluorescent sensor Phen Green-SK (PGSK) in ethanol-based solutions. We first evaluate the dependence of the chelation enhanced quenching of PGSK on iron and aluminum ion concentrations. Subsequently, we apply PGSK to examine the anodic dissolution of metal corrosion. The observed time-dependent PGSK-quenching quantifies the corrosion rates of two metals over 24 h of immersion in ethanol-based solutions. The PGSK-based quantification of corrosion is compared to scanning electron microscopy and electrochemical techniques, including open circuit potential and Tafel extrapolation. The corrosion rates calculated from PGSK-quenching and Tafel extrapolation are in agreement, and both indicate a decrease in corrosion rates over 24 h. Our work shows PGSK can efficiently sense and quantify anodic corrosion reactions at metal interfaces, especially in organic solvents or other non-aqueous environments where the application of electrochemical techniques can be limited by the poor conductivity of the surrounding medium.  more » « less
Award ID(s):
2142821
PAR ID:
10506100
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
The Electrochemical Society
Date Published:
Journal Name:
Journal of The Electrochemical Society
Volume:
171
Issue:
5
ISSN:
0013-4651
Format(s):
Medium: X Size: Article No. 051502
Size(s):
Article No. 051502
Sponsoring Org:
National Science Foundation
More Like this
  1. This work demonstrates an approach using solid state electrochemical cells to study the long-term oxidation of materials at 800 °C. The capability of zirconia-based cells to control the oxygen partial pressure was first evaluated using an empty chamber. For most voltages applied to the pump cell, the steady state sensor voltage matches the pump voltage, leakage rates are low, and response times are short, allowing precise and prompt control over the chamber atmosphere. The technique was validated by measuring the oxidation of niobium and nickel. Niobium was oxidized at pump voltages ranging from 0 mV to +500 mV; decreasing the oxygen partial pressure around the specimen reduces the oxidation rate. Comparing the integrated oxidation rate with the weighed mass gain showed good agreement. Measured oxidation rates for nickel were of order 1μg h−1, illustrating the sensitivity of this technique. For higher oxidation rates, a depression in oxygen partial pressure was observed around the specimen. Improved control over the oxidation potential was achieved by using a sensor cell to dynamically tune the pump voltage. Rates for both metals are compared to literature reports using other techniques. 
    more » « less
  2. Both frugivores and nectarivores are potentially exposed to dietary ethanol produced by fermentative yeasts which metabolize sugars. Some nectarivorous mammals exhibit a preference for low-concentration ethanol solutions compared to controls of comparable caloric content, but behavioural responses to ethanol by nectar-feeding birds are unknown. We investigated dietary preference by Anna's Hummingbirds (Calypte anna) for ethanol-enhanced sucrose solutions. Via repeated binary-choice experiments, three adult male hummingbirds were exposed to sucrose solutions containing 0%, 1% or 2% ethanol; rates of volitional nectar consumption were measured over a 3 h interval. Hummingbirds did not discriminate between 0% and 1% ethanol solutions, but exhibited significantly reduced rates of consumption of a 2% ethanol solution. Opportunistic measurements of ethanol concentrations within hummingbird feeders registered values peaking at about 0.05%. Ethanol at low concentrations (i.e. up to 1%) is not aversive to Anna's Hummingbirds and may be characteristic of both natural and anthropogenic nectars upon which they feed. Given high daily amounts of nectar consumption by hummingbirds, chronic physiological exposure to ethanol can thus be substantial, although naturally occurring concentrations within floral nectar are unknown. 
    more » « less
  3. null (Ed.)
    The copper corrosion was studied for 30 days in two alkaline electrolytes: saturated Ca(OH)2 and cement extract, employed to simulate concrete-pore environments. Electrochemical Impedance Spectroscopy (EIS) and Cyclic Voltammetry were carried out at the open circuit potential (OCP), and potentiodynamic polarization (PDP) curves were performed for comparative purposes. Electrochemical current fluctuations, considered as electrochemical noise (EN), were employed as non-destructive methods. The tests revealed that sat. Ca(OH)2 is the less aggressive to the Cu surface, mainly because of the lower in one order pH. In consequence, the OCP values of Cu were more positive, the polarization resistance values were higher by one order of magnitude, and the anodic currents of Cu were lower than those in the cement extract. The analyzed EN indicated that the initial corrosion attacks on the Cu surface are quasi-uniform, resulting from the stationary persistent corrosion process occurring in both model solutions. XPS analysis and X-ray diffraction (XRD) patterns revealed that in sat. Ca(OH)2, a Cu2O/CuO corrosion layer was formed, which effectively protects the metallic Cu-surface. We present evidence for the sequential oxidation of Cu to the (+1) and (+2) species, its impact on the corrosion layer, and also its protective properties. 
    more » « less
  4. Nanofluids are defined as stable colloidal suspensions of nanoparticles within solvents. Over the past thirty years, they have emerged as promising candidates for various energy applications due to their unique material properties, which often exhibit anomalous behaviors, such as enhanced thermal energy storage (TES). The thermophysical properties and transport phenomena of nanofluids, including unusual mass transfer characteristics, can be complex and differ significantly from those of the base solvents. The envisioned applications of nanofluids are diverse and include their use as cooling agents in automobiles and manufacturing plants; as heat transfer fluids (HTFs) in heat exchangers for conventional thermal power plants, nuclear power plants, and renewable energy systems like concentrated solar power (CSP) plants; as materials for enhanced thermal energy storage, either in the form of sensible heat stored in molten salt nanofluids or latent heat in phase change materials (PCMs); as surfactants for cleaning purposes; as agents for mitigating radiation; and as corrosion inhibitors. This study investigates the corrosion performance of nanofluids when applied to metallic and alloy substrates for potential applications. Electrochemical experiments were conducted to assess the corrosion response and extent in aluminum and scratched brass. To evaluate the feasibility of adding nanoparticles to coolants, aluminum and brass surfaces were exposed to 0.01 M NaCl water solutions doped with silica nanoparticles at concentrations of 0.05% and 0.1% by mass, along with sodium dodecyl benzene sulfonate (SDBS) at 0.1% by mass. The results showed that the relative corrosion performance of the nanofluids is highly sensitive to the material nature of the tested substrates. Both brass and aluminum demonstrated improved corrosion resistance upon the introduction of silica SDBS additives into the fluid. 
    more » « less
  5. Many sub-Neptune exoplanets have been believed to be composed of a thick hydrogen-dominated atmosphere and a high-temperature heavier-element-dominant core. From an assumption that there is no chemical reaction between hydrogen and silicates/metals at the atmosphere–interior boundary, the cores of sub-Neptunes have been modeled with molten silicates and metals (magma) in previous studies. In large sub-Neptunes, pressure at the atmosphere–magma boundary can reach tens of gigapascals where hydrogen is a dense liquid. A recent experiment showed that hydrogen can induce the reduction of Fe 2 + in (Mg,Fe)O to Fe 0 metal at the pressure–temperature conditions relevant to the atmosphere–interior boundary. However, it is unclear whether Mg, one of the abundant heavy elements in the planetary interiors, remains oxidized or can be reduced by H. Our experiments in the laser-heated diamond-anvil cell found that heating of MgO + Fe to 3,500 to 4,900 K (close to or above their melting temperatures) in an H medium leads to the formation of Mg 2 FeH 6 and H 2 O at 8 to 13 GPa. At 26 to 29 GPa, the behavior of the system changes, and Mg–H in an H fluid and H 2 O were detected with separate FeH x . The observations indicate the dissociation of the Mg–O bond by H and subsequent production of hydride and water. Therefore, the atmosphere–magma interaction can lead to a fundamentally different mineralogy for sub-Neptune exoplanets compared with rocky planets. The change in the chemical reaction at the higher pressures can also affect the size demographics (i.e., “radius cliff”) and the atmosphere chemistry of sub-Neptune exoplanets. 
    more » « less