Abstract Moiré superlattices created by the twisted stacking of two-dimensional crystals can host electronic bands with flat energy dispersion in which enhanced interactions promote correlated electron states. The twisted double bilayer graphene (TDBG), where two Bernal bilayer graphene are stacked with a twist angle, is such a moiré system with tunable flat bands. Here, we use gate-tuned scanning tunneling spectroscopy to directly demonstrate the tunability of the band structure of TDBG with an electric field and to show spectroscopic signatures of electronic correlations and topology for its flat band. Our spectroscopic experiments are in agreement with a continuum model of TDBG band structure and reveal signatures of a correlated insulator gap at partial filling of its isolated flat band. The topological properties of this flat band are probed with the application of a magnetic field, which leads to valley polarization and the splitting of Chern bands with a large effective g-factor.
more »
« less
Kagome and honeycomb flat bands in moiré graphene
We propose a class of graphene-based moiré systems hosting flat bands on kagome and honeycomb moiré superlattices. These systems are formed by stacking a graphene layer on a 2D substrate with lattice constant approximately sqrt3 times that of graphene. When the moiré potentials are induced by a 2D irreducible corepresentation in the substrate, the model shows a rich phase diagram of low-energy bands including eigenvalue fragile phases as well as kagome and honeycomb flat bands. Spin-orbit coupling in the substrate can lift symmetry-protected degeneracies and create spin Chern bands, and we observe spin Chern numbers up to three. We additionally propose a moiré system formed by stacking two graphene-like layers with similar lattice constants and Fermi energies but with Dirac Fermi velocities of opposite sign. This system exhibits multiple kagome and honeycomb flat bands simultaneously. Both models we propose resemble the hypermagic model of [Scheer et al., Phys. Rev. B 106, 115418 (2022)] and may provide ideal platforms for the realization of strongly correlated topological phases.
more »
« less
- Award ID(s):
- 2141966
- PAR ID:
- 10506445
- Publisher / Repository:
- American Physical Society
- Date Published:
- Journal Name:
- Physical Review B
- Volume:
- 108
- Issue:
- 24
- ISSN:
- 2469-9950
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Kagome lattices host flat bands due to their frustrated lattice geometry, which leads to destructive quantum interference of electron wave functions. Here, we report imaging of the kagome flat band localization in real-space using scanning tunneling microscopy. We identify both the Fe3Sn kagome lattice layer and the Sn2honeycomb layer with atomic resolution in kagome antiferromagnet FeSn. On the Fe3Sn lattice, at the flat band energy determined by the angle resolved photoemission spectroscopy, tunneling spectroscopy detects an unusual state localized uniquely at the Fe kagome lattice network. We further show that the vectorial in-plane magnetic field manipulates the spatial anisotropy of the localization state within each kagome unit cell. Our results are consistent with the real-space flat band localization in the magnetic kagome lattice. We further discuss the magnetic tuning of flat band localization under the spin–orbit coupled magnetic kagome lattice model.more » « less
-
At partial fillings of its flat electronic bands, magic-angle twisted bilayer graphene (MATBG) hosts a rich variety of competing correlated phases that show sample-to-sample variations. Divergent phase diagrams in MATBG are often attributed to the sublattice polarization energy scale, tuned by the degree of alignment of the hexagonal boron nitride (hBN) substrates typically used in van der Waals devices. Unaligned MATBG exhibits unconventional superconductor and correlated insulator phases, while nearly perfectly aligned MATBG/hBN exhibits zero-field Chern insulating phases and lacks superconductivity. Here we use scanning tunneling microscopy and spectroscopy (STM/STS) to observe gapped phases at partial fillings of the flat bands of MATBG in a new intermediate regime of sublattice polarization, observed when MATBG is only partially aligned (θGr-hBN ≈ 1.65°) to the underlying hBN substrate. Under this condition, MATBG hosts not only phenomena that naturally interpolate between the two sublattice potential limits, but also unexpected gapped phases absent in either of these limits. At charge neutrality, we observe an insulating phase with a small energy gap (Δ < 5 meV) likely related to weak sublattice symmetry breaking from the hBN substrate. In addition, we observe new gapped phases near fractional fillings ν = ±1/3 and ν = ±1/6, which have not been previously observed in MATBG. Importantly, energy-resolved STS unambiguously identifies these fractional filling states to be of single-particle origin, possibly a result of the super-superlattice formed by two moiré superlattices. Our observations emphasize the power of STS in distinguishing single-particle gapped phases from many-body gapped phases in situations that could be easily confused in electrical transport measurements, and demonstrate the use of substrate engineering for modifying the electronic structure of a moiré flat-band material.more » « less
-
Dirac Fermion Cloning, Moiré Flat Bands, and Magic Lattice Constants in Epitaxial Monolayer GrapheneAbstract Tuning interactions between Dirac states in graphene has attracted enormous interest because it can modify the electronic spectrum of the 2D material, enhance electron correlations, and give rise to novel condensed‐matter phases such as superconductors, Mott insulators, Wigner crystals, and quantum anomalous Hall insulators. Previous works predominantly focus on the flat band dispersion of coupled Dirac states from different twisted graphene layers. In this work, a new route to realizing flat band physics in monolayer graphene under a periodic modulation from substrates is proposed. Graphene/SiC heterostructure is taken as a prototypical example and it is demonstrated experimentally that the substrate modulation leads to Dirac fermion cloning and, consequently, the proximity of the two Dirac cones of monolayer graphene in momentum space. Theoretical modeling captures the cloning mechanism of the Dirac states and indicates that moiré flat bands can emerge at certain magic lattice constants of the substrate, specifically when the period of modulation becomes nearly commensurate with the supercell of graphene. The results show that epitaxial single monolayer graphene on suitable substrates is a promising platform for exploring exotic many‐body quantum phases arising from interactions between Dirac electrons.more » « less
-
Abstract Moiré superlattices engineer band properties and enable observation of fractal energy spectra of Hofstadter butterfly. Recently, correlated-electron physics hosted by flat bands in small-angle moiré systems has been at the foreground. However, the implications of moiré band topology within the single-particle framework are little explored experimentally. An outstanding problem is understanding the effect of band topology on Hofstadter physics, which does not require electron correlations. Our work experimentally studies Chern state switching in the Hofstadter regime using twisted double bilayer graphene (TDBG), which offers electric field tunable topological bands, unlike twisted bilayer graphene. Here we show that the nontrivial topology reflects in the Hofstadter spectra, in particular, by displaying a cascade of Hofstadter gaps that switch their Chern numbers sequentially while varying the perpendicular electric field. Our experiments together with theoretical calculations suggest a crucial role of charge polarization changing concomitantly with topological transitions in this system. Layer polarization is likely to play an important role in the topological states in few-layer twisted systems. Moreover, our work establishes TDBG as a novel Hofstadter platform with nontrivial magnetoelectric coupling.more » « less
An official website of the United States government

