skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An Eulerian finite element method for the linearized Navier–Stokes problem in an evolving domain
Abstract The paper addresses an error analysis of an Eulerian finite element method used for solving a linearized Navier–Stokes problem in a time-dependent domain. In this study, the domain’s evolution is assumed to be known and independent of the solution to the problem at hand. The numerical method employed in the study combines a standard backward differentiation formula-type time-stepping procedure with a geometrically unfitted finite element discretization technique. Additionally, Nitsche’s method is utilized to enforce the boundary conditions. The paper presents a convergence estimate for several velocity–pressure elements that are inf-sup stable. The estimate demonstrates optimal order convergence in the energy norm for the velocity component and a scaled $$L^{2}(H^{1})$$-type norm for the pressure component.  more » « less
Award ID(s):
2309197 2309425
PAR ID:
10506590
Author(s) / Creator(s):
;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
IMA Journal of Numerical Analysis
ISSN:
0272-4979
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In this paper, we propose and analyze a finite-element method of variational data assimilation for a second-order parabolic interface equation on a two-dimensional bounded domain. The Tikhonov regularization plays a key role in translating the data assimilation problem into an optimization problem. Then the existence, uniqueness and stability are analyzed for the solution of the optimization problem. We utilize the finite-element method for spatial discretization and backward Euler method for the temporal discretization. Then based on the Lagrange multiplier idea, we derive the optimality systems for both the continuous and the discrete data assimilation problems for the second-order parabolic interface equation. The convergence and the optimal error estimate are proved with the recovery of Galerkin orthogonality. Moreover, three iterative methods, which decouple the optimality system and significantly save computational cost, are developed to solve the discrete time evolution optimality system. Finally, numerical results are provided to validate the proposed method. 
    more » « less
  2. A mixed finite element method is presented for the Biot consolidation problem in poroelasticity. More precisely, the displacement is approximated by using the Crouzeix-Raviart nonconforming finite elements, while the fluid pressure is approximated by using the node conforming finite elements. The well-posedness of the fully discrete scheme is established, and a corresponding priori error estimate with optimal order in the energy norm is also derived. Numerical experiments are provided to validate the theoretical results. 
    more » « less
  3. Surface Stokes and Navier–Stokes equations are used to model fluid flow on surfaces. They have attracted significant recent attention in the numerical analysis literature because approximation of their solutions poses significant challenges not encountered in the Euclidean context. One challenge comes from the need to simultaneously enforce tangentiality and $H^1$ conformity (continuity) of discrete vector fields used to approximate solutions in the velocity-pressure formulation. Existing methods in the literature all enforce one of these two constraints weakly either by penalization or by use of Lagrange multipliers. Missing so far is a robust and systematic construction of surface Stokes finite element spaces which employ nodal degrees of freedom, including MINI, Taylor–Hood, Scott–Vogelius, and other composite elements which can lead to divergence-conforming or pressure-robust discretizations. In this paper we construct surface MINI spaces whose velocity fields are tangential. They are not $H^1$-conforming, but do lie in $H(div)$ and do not require penalization to achieve optimal convergence rates. We prove stability and optimal-order energy-norm convergence of the method and demonstrate optimal-order convergence of the velocity field in $$L_2$$ via numerical experiments. The core advance in the paper is the construction of nodal degrees of freedom for the velocity field. This technique also may be used to construct surface counterparts to many other standard Euclidean Stokes spaces, and we accordingly present numerical experiments indicating optimal-order convergence of nonconforming tangential surface Taylor–Hood elements. 
    more » « less
  4. Abstract We develop a convergence analysis for the simplest finite element method for a model linear-quadratic elliptic distributed optimal control problem with pointwise control and state constraints under minimal assumptions on the constraint functions.We then derive the generalized Karush–Kuhn–Tucker conditions for the solution of the optimal control problem from the convergence results of the finite element method and the Karush–Kuhn–Tucker conditions for the solutions of the discrete problems. 
    more » « less
  5. Abstract We present an efficient numerical method to approximate the flux variable for the Darcy flow model. An important feature of our new method is that the approximate solution for the flux variable is obtained without approximating the pressure at all. To accomplish this, we introduce a user‐defined parameter delta, which is typically chosen to be small so that it minimizes the negative effect resulting from the absence of the pressure, such as inaccuracy in both the flux approximation and the mass conservation. The resulting algebraic system is of significantly smaller degrees of freedom, compared to the one from the mixed finite element methods or least‐squares methods. We also interpret the proposed method as a single step iterate of the augmented Lagrangian Uzawa applied to solve the mixed finite element in a special setting. Lastly, the pressure recovery from the flux variable is discussed and an optimal‐order error estimate for the method is obtained. Several examples are provided to verify the proposed theory and algorithm, some of which are from more realistic models such as SPE10. 
    more » « less