skip to main content

This content will become publicly available on March 1, 2025

Title: Key Factors Determining Nightside Energetic Electron Losses Driven by Whistler‐Mode Waves

Energetic electron losses by pitch‐angle scattering and precipitation to the atmosphere from the radiation belts are controlled, to a great extent, by resonant wave particle interactions with whistler‐mode waves. The efficacy of such precipitation is primarily modulated by wave intensity, although its relative importance, compared to other wave and plasma parameters, remains unclear. Precipitation spectra from the low‐altitude, polar‐orbiting ELFIN mission have previously been demonstrated to be consistent with energetic precipitation modeling derived from empirical models of field‐aligned wave power across a wide swath of local‐time sectors. However, such modeling could not explain the intense, relativistic electron precipitation observed on the nightside. Therefore, this study aims to additionally consider the contributions of three modifications—wave obliquity, frequency spectrum, and local plasma density—to explain this discrepancy on the nightside. By incorporating these effects into both test particle simulations and quasi‐linear diffusion modeling, we find that realistic implementations of each individual modification result in only slight changes to the electron precipitation spectrum. However, these modifications, when combined, enable more accurate modeling of ELFIN‐observed spectra. In particular, a significant reduction in plasma density enables lower frequency waves, oblique, or even quasi field‐aligned waves to resonate with near ∼1 MeV electrons closer to the equator. We demonstrate that the levels of modification required to accurately reproduce the nightside spectra of whistler‐mode wave‐driven relativistic electron precipitation match empirical expectations and should therefore be included in future radiation belt modeling.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Geophysical Research: Space Physics
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Electron fluxes in Earth's radiation belts are significantly affected by their resonant interaction with whistler‐mode waves. This wave‐particle interaction often occurs via first cyclotron resonance and, when intense and nonlinear, can accelerate subrelativistic electrons to relativistic energies while also scattering them into the atmospheric loss cone. Here, we model Electron Losses and Fields INvestgation’s (ELFIN) low‐altitude satellite measurements of precipitating electron spectra with a wave‐electron interaction model to infer the profiles of whistler‐mode intensity along magnetic latitude assuming realistic waveforms and statistical models of plasma density. We then compare these profiles with a wave power spatial distribution along field lines from an empirical model. We find that this empirical model is consistent with observations of subrelativistic (<200 keV) electron precipitation events, but deviates significantly for relativistic (>200 keV) electron precipitation events at allMLTs, especially on the nightside. This may be due to the sparse coverage of wave measurements at mid‐to‐high latitudes which causes statistically averaged wave power to be likely underestimated in current empirical wave models. As a result, this discrepancy suggests that intense waves likely do propagate to higher latitudes, although further investigation is required to quantify how well this high‐latitude population can account for the observed relativistic electron precipitation.

    more » « less
  2. Abstract

    Resonant interactions of energetic electrons with electromagnetic whistler‐mode waves (whistlers) contribute significantly to the dynamics of electron fluxes in Earth's outer radiation belt. At low geomagnetic latitudes, these waves are very effective in pitch angle scattering and precipitation into the ionosphere of low equatorial pitch angle, tens of keV electrons and acceleration of high equatorial pitch angle electrons to relativistic energies. Relativistic (hundreds of keV), electrons may also be precipitated by resonant interaction with whistlers, but this requires waves propagating quasi‐parallel without significant intensity decrease to high latitudes where they can resonate with higher energy low equatorial pitch angle electrons than at the equator. Wave propagation away from the equatorial source region in a non‐uniform magnetic field leads to ray divergence from the originally field‐aligned direction and efficient wave damping by Landau resonance with suprathermal electrons, reducing the wave ability to scatter electrons at high latitudes. However, wave propagation can become ducted along field‐aligned density peaks (ducts), preventing ray divergence and wave damping. Such ducting may therefore result in significant relativistic electron precipitation. We present evidence that ducted whistlers efficiently precipitate relativistic electrons. We employ simultaneous near‐equatorial and ground‐based measurements of whistlers and low‐altitude electron precipitation measurements by ELFIN CubeSat. We show that ducted waves (appearing on the ground) efficiently scatter relativistic electrons into the loss cone, contrary to non‐ducted waves (absent on the ground) precipitating onlykeV electrons. Our results indicate that ducted whistlers may be quite significant for relativistic electron losses; they should be further studied statistically and possibly incorporated in radiation belt models.

    more » « less
  3. Abstract

    Electron losses from the outer radiation belt are typically attributed to resonant electron scattering by whistler‐mode waves. Although the quasi‐linear diffusive regime of such scattering is well understood, the observed waves are often quite intense and in the nonlinear regime of resonant wave‐particle interaction. Such nonlinear resonant interactions are still being actively studied due to their potential for driving fast precipitation. However, direct observations of nonlinear resonance of whistler‐mode waves with electron distributions are scarce. Here, we present evidence for such resonance with high‐resolution electron energy and pitch angle spectra acquired at low‐altitudes by the dual Electron Losses and Fields INvestgation (ELFIN) CubeSats combined with conjugate measurements of equatorial plasma parameters, wave properties, and electron energy spectra by the Time History of Events and Macroscale Interactions during Substorms and Magnetospheric MultiScale missions. ELFIN has obtained numerous conjunction events exhibiting whistler wave driven precipitation; in this study, we present two such events which epitomize signatures of nonlinear resonant scattering. A test particle simulation of electron interactions with intense whistler‐mode waves prescribed at the equator is employed to directly compare modeled precipitation spectra with ELFIN observations. We show that the observed precipitating spectra match expectations to within observational uncertainties of wave amplitude for reasonable assumptions of wave power distribution along the magnetic field line. These results indicate the importance of nonlinear resonant effects when describing intense precipitation patterns of energetic electrons and open the possibility of remotely investigating equatorial wave properties using just properties of precipitation energy and pitch angle spectra.

    more » « less
  4. Abstract

    We review comprehensive observations of electromagnetic ion cyclotron (EMIC) wave-driven energetic electron precipitation using data collected by the energetic electron detector on the Electron Losses and Fields InvestigatioN (ELFIN) mission, two polar-orbiting low-altitude spinning CubeSats, measuring 50-5000 keV electrons with good pitch-angle and energy resolution. EMIC wave-driven precipitation exhibits a distinct signature in energy-spectrograms of the precipitating-to-trapped flux ratio: peaks at >0.5 MeV which are abrupt (bursty) (lasting ∼17 s, or$\Delta L\sim 0.56$ΔL0.56) with significant substructure (occasionally down to sub-second timescale). We attribute the bursty nature of the precipitation to the spatial extent and structuredness of the wave field at the equator. Multiple ELFIN passes over the same MLT sector allow us to study the spatial and temporal evolution of the EMIC wave - electron interaction region. Case studies employing conjugate ground-based or equatorial observations of the EMIC waves reveal that the energy of moderate and strong precipitation at ELFIN approximately agrees with theoretical expectations for cyclotron resonant interactions in a cold plasma. Using multiple years of ELFIN data uniformly distributed in local time, we assemble a statistical database of ∼50 events of strong EMIC wave-driven precipitation. Most reside at$L\sim 5-7$L57at dusk, while a smaller subset exists at$L\sim 8-12$L812at post-midnight. The energies of the peak-precipitation ratio and of the half-peak precipitation ratio (our proxy for the minimum resonance energy) exhibit an$L$L-shell dependence in good agreement with theoretical estimates based on prior statistical observations of EMIC wave power spectra. The precipitation ratio’s spectral shape for the most intense events has an exponential falloff away from the peak (i.e., on either side of$\sim 1.45$1.45MeV). It too agrees well with quasi-linear diffusion theory based on prior statistics of wave spectra. It should be noted though that this diffusive treatment likely includes effects from nonlinear resonant interactions (especially at high energies) and nonresonant effects from sharp wave packet edges (at low energies). Sub-MeV electron precipitation observed concurrently with strong EMIC wave-driven >1 MeV precipitation has a spectral shape that is consistent with efficient pitch-angle scattering down to ∼ 200-300 keV by much less intense higher frequency EMIC waves at dusk (where such waves are most frequent). At ∼100 keV, whistler-mode chorus may be implicated in concurrent precipitation. These results confirm the critical role of EMIC waves in driving relativistic electron losses. Nonlinear effects may abound and require further investigation.

    more » « less
  5. Abstract

    Energetic electron precipitation from the equatorial magnetosphere into the atmosphere plays an important role in magnetosphere‐ionosphere coupling: precipitating electrons alter ionospheric properties, whereas ionospheric outflows modify equatorial plasma conditions affecting electromagnetic wave generation and energetic electron scattering. However, ionospheric measurements cannot be directly related to wave and energetic electron properties measured by high‐altitude, near‐equatorial spacecraft, due to large mapping uncertainties. We aim to resolve this by projecting low‐altitude measurements of energetic electron precipitation by ELFIN CubeSats onto total electron content (TEC) maps serving as a proxy for ionospheric density structures. We examine three types of precipitation on the nightside: precipitation of <200 keV electrons in the plasma sheet, bursty precipitation of <500 keV electrons by whistler‐mode waves, and relativistic (>500 keV) electron precipitation by EMIC waves. All three types of precipitation show distinct features in TEC horizontal gradients, and we discuss possible implications of these features.

    more » « less