Abstract Quantum devices based on InSb nanowires (NWs) are a prime candidate system for realizing and exploring topologically-protected quantum states and for electrically-controlled spin-based qubits. The influence of disorder on achieving reliable quantum transport regimes has been studied theoretically, highlighting the importance of optimizing both growth and nanofabrication. In this work, we consider both aspects. We developed InSb NW with thin diameters, as well as a novel gating approach, involving few-layer graphene and atomic layer deposition-grown AlOx. Low-temperature electronic transport measurements of these devices reveal conductance plateaus and Fabry–Pérot interference, evidencing phase-coherent transport in the regime of few quantum modes. The approaches developed in this work could help mitigate the role of material and fabrication-induced disorder in semiconductor-based quantum devices.
more »
« less
Thermal scanning probe and laser lithography for patterning nanowire based quantum devices
Abstract Semiconductor nanowire (NW) quantum devices offer a promising path for the pursuit and investigation of topologically-protected quantum states, and superconducting and spin-based qubits that can be controlled using electric fields. Theoretical investigations into the impact of disorder on the attainment of dependable topological states in semiconducting nanowires with large spin–orbit coupling andg-factor highlight the critical need for improvements in both growth processes and nanofabrication techniques. In this work, we used a hybrid lithography tool for both the high-resolution thermal scanning probe lithography and high-throughput direct laser writing of quantum devices based on thin InSb nanowires with contact spacing of 200 nm. Electrical characterization demonstrates quasi-ballistic transport. The methodology outlined in this study has the potential to reduce the impact of disorder caused by fabrication processes in quantum devices based on 1D semiconductors.
more »
« less
- Award ID(s):
- 2011401
- PAR ID:
- 10506813
- Publisher / Repository:
- Nanotechnology
- Date Published:
- Journal Name:
- Nanotechnology
- Volume:
- 35
- Issue:
- 25
- ISSN:
- 0957-4484
- Page Range / eLocation ID:
- 255302
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract 5dtransition metal oxides, such as iridates, have attracted significant interest in condensed matter physics throughout the past decade owing to their fascinating physical properties that arise from intrinsically strong spin-orbit coupling (SOC) and its interplay with other interactions of comparable energy scales. Among the rich family of iridates, iridium dioxide (IrO2), a simple binary compound long known as a promising catalyst for water splitting, has recently been demonstrated to possess novel topological states and exotic transport properties. The strong SOC and the nonsymmorphic symmetry that IrO2possesses introduce symmetry-protected Dirac nodal lines (DNLs) within its band structure as well as a large spin Hall effect in the transport. Here, we review recent advances pertaining to the study of this unique SOC oxide, with an emphasis on the understanding of the topological electronic structures, syntheses of high crystalline quality nanostructures, and experimental measurements of its fundamental transport properties. In particular, the theoretical origin of the presence of the fourfold degenerate DNLs in band structure and its implications in the angle-resolved photoemission spectroscopy measurement and in the spin Hall effect are discussed. We further introduce a variety of synthesis techniques to achieve IrO2nanostructures, such as epitaxial thin films and single crystalline nanowires, with the goal of understanding the roles that each key parameter plays in the growth process. Finally, we review the electrical, spin, and thermal transport studies. The transport properties under variable temperatures and magnetic fields reveal themselves to be uniquely sensitive and modifiable by strain, dimensionality (bulk, thin film, nanowire), quantum confinement, film texture, and disorder. The sensitivity, stemming from the competing energy scales of SOC, disorder, and other interactions, enables the creation of a variety of intriguing quantum states of matter.more » « less
-
Abstract Disorder is an essential parameter in photonic systems and devices, influencing phenomena such as the robustness of topological photonic states and the Anderson localization of modes in waveguides. We develop and demonstrate a method for both analyzing and visualizing positional, size, and shape disorder in periodic structures such as photonic crystals. This analysis method shows selectivity for disorder type and sensitivity to disorder down to less than 1%. We show that the method can be applied to more complex shapes such as those used in topological photonics. The method provides a powerful tool for process development and quality control, including analyzing the precision of E-Beam Lithography before patterns are transferred; quantifying the precision limits of lithography, deposition, or etch processes; and studying the intentional displacement of individual objects within otherwise periodic arrays.more » « less
-
Abstract Spin systems are an attractive candidate for quantum-enhanced metrology. Here we develop a variational method to generate metrological states in small dipolar-interacting spin ensembles with limited qubit control. For both regular and disordered spatial spin configurations the generated states enable sensing beyond the standard quantum limit (SQL) and, for small spin numbers, approach the Heisenberg limit (HL). Depending on the circuit depth and the level of readout noise, the resulting states resemble Greenberger-Horne-Zeilinger (GHZ) states or Spin Squeezed States (SSS). Sensing beyond the SQL holds in the presence of finite spin polarization and a non-Markovian noise environment. The developed black-box optimization techniques for small spin numbers (N ≤ 10) are directly applicable to diamond-based nanoscale field sensing, where the sensor size limitsNand conventional squeezing approaches fail.more » « less
-
The past decade has witnessed the emergence of a new frontier in condensed matter physics: topological materials with an electronic band structure belonging to a different topological class from that of ordinary insulators and metals. This non-trivial band topology gives rise to robust, spin-polarized electronic states with linear energy–momentum dispersion at the edge or surface of the materials. For topological materials to be useful in electronic devices, precise control and accurate detection of the topological states must be achieved in nanostructures, which can enhance the topological states because of their large surface-to-volume ratios. In this Review, we discuss notable synthesis and electron transport results of topological nanomaterials, from topological insulator nanoribbons and plates to topological crystalline insulator nanowires and Weyl and Dirac semimetal nanobelts. We also survey superconductivity in topological nanowires, a nanostructure platform that might enable the controlled creation of Majorana bound states for robust quantum computations. Two material systems that can host Majorana bound states are compared: spin–orbit coupled semiconducting nanowires and topological insulating nanowires, a focus of this Review. Finally, we consider the materials and measurement challenges that must be overcome before topological nanomaterials can be used in next-generation electronic devices.more » « less
An official website of the United States government

