One of the most basic pieces of information gained from dynamic electromyography is accurately defining muscle action and phase timing within the gait cycle. The human gait relies on selective timing and the intensity of appropriate muscle activations for stability, loading, and progression over the supporting foot during stance, and further to advance the limb in the swing phase. A common clinical practice is utilizing a low-pass filter to denoise integrated electromyogram (EMG) signals and to determine onset and cessation events using a predefined threshold. However, the accuracy of the defining period of significant muscle activations via EMG varies with the temporal shift involved in filtering the signals; thus, the low-pass filtering method with a fixed order and cut-off frequency will introduce a time delay depending on the frequency of the signal. In order to precisely identify muscle activation and to determine the onset and cessation times of the muscles, we have explored here onset and cessation epochs with denoised EMG signals using different filter banks: the wavelet method, empirical mode decomposition (EMD) method, and ensemble empirical mode decomposition (EEMD) method. In this study, gastrocnemius muscle onset and cessation were determined in sixteen participants within two different age groups and under two different walking conditions. Low-pass filtering of integrated EMG (iEMG) signals resulted in premature onset (28% stance duration) in younger and delayed onset (38% stance duration) in older participants, showing the time-delay problem involved in this filtering method. Comparatively, the wavelet denoising approach detected onset for normal walking events most precisely, whereas the EEMD method showed the smallest onset deviation. In addition, EEMD denoised signals could further detect pre-activation onsets during a fast walking condition. A comprehensive comparison is discussed on denoising EMG signals using EMD, EEMD, and wavelet denoising in order to accurately define an onset of muscle under different walking conditions.
more »
« less
One or two frequencies? The Iterative Filtering answers
The Iterative Filtering method is a technique aimed at the decomposition of non-stationary and non-linear signals into simple oscillatory components. This method, proposed a decade ago as an alternative technique to the Empirical Mode Decomposition, has been used extensively in many applied fields of research and studied, from a mathematical point of view, in several papers published in the last few years. However, even if its convergence and stability are now established both in the continuous and discrete setting, it is still an open problem to understand up to what extent this approach can separate two close-by frequencies contained in a signal. In this paper, first we recall previously discovered theoretical results about Iterative Filtering. Afterward, we prove a few new theorems regarding the ability of this method in separating two nearby frequencies both in the case of continuously and discrete sampled signals. Among them, we prove a theorem which allows to construct filters which captures, up to machine precision, a specific frequency. We run numerical tests to confirm our findings and to compare the performance of Iterative Filtering with the one of Empirical Mode Decomposition and Synchrosqueezing methods. All the results presented confirm the ability of the technique under investigation in addressing the fundamental “one or two frequencies” question.
more »
« less
- Award ID(s):
- 2307465
- PAR ID:
- 10506887
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Applied Mathematics and Computation
- Volume:
- 462
- Issue:
- C
- ISSN:
- 0096-3003
- Page Range / eLocation ID:
- 128322
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Acoustic devices have played a major role in telecommunications for decades as the leading technology for filtering in RF and microwave frequencies. While filter requirements for insertion loss and bandwidth become more stringent, more functionality is desired for many applications to improve overall system level performance. For instance, a filter with non-reciprocal transmission can minimize losses due to mismatch and protect the source from reflections while also performing its filtering duties. A device such as this one was originally researched by scientists decades ago. These devices were based on the acoustoelectric effect where surface acoustic waves (SAW) traveling in the same direction are as drift carriers in a nearby semiconductor are amplified. While several experiments were successfully demonstrated in [1], [2], [3]. these devices suffered from extremely high operating electric fields and noise figure [4], [5]. In the past few years, new techniques have been developed for implementing non-reciprocal devices such as isolators and circulators without utilizing magnetic materials [6], [7], [8], [9]. The most popular technique has been spatio-temporal modulation (STM) where commutated clock signals synchronized with delay elements result in non-reciprocal transmission through the network. STM has also been adapted by researchers to create non-reciprocal filters. The work in [10] utilizes 4 clocks signals to obtain a non-reciprocal filter with an insertion loss of -6.6 dB an isolation of 25.4 dB. Another filter demonstrated in [11] utilizes 6 synchronized clock signals to obtain a non-reciprocal filter with an insertion loss of -5.6 dB and an Isolation of 20 dB. In this work, a novel non-reciprocal topology is explored with the use of only one modulation signal. The design is based on asymmetrical SAW delay lines with a parametric amplifier. The device can operate in two different modes: phase coherent mode and phase incoherent mode. In phase coherent mode, the device is capable of over +12 dB of gain and 20.2 dB of isolation. A unique feature of this mode is that the phase of the pump signal can be utilized to tune the frequency response of the filter. Under the phase-incoherent mode, the pump frequency remains constant and the device behaves as a normal filter with non-reciprocal transmission exhibiting over +7 dB of gain and 17.33 dB of isolation. While the tuning capability is lost in this mode, phase-coherence is no longer necessary so the device can be utilized in most filtering applications.more » « less
-
Abstract BackgroundComputed tomography (CT) reconstruction problems are always framed as inverse problems, where the attenuation map of an imaged object is reconstructed from the sinogram measurement. In practice, these inverse problems are often ill‐posed, especially under few‐view and limited‐angle conditions, which makes accurate reconstruction challenging. Existing solutions use regularizations such as total variation to steer reconstruction algorithms to the most plausible result. However, most prevalent regularizations rely on the same priors, such as piecewise constant prior, hindering their ability to collaborate effectively and further boost reconstruction precision. PurposeThis study aims to overcome the aforementioned challenge a prior previously limited to discrete tomography. This enables more accurate reconstructions when the proposed method is used in conjunction with most existing regularizations as they utilize different priors. The improvements will be demonstrated through experiments conducted under various conditions. MethodsInspired by the discrete algebraic reconstruction technique (DART) algorithm for discrete tomography, we find out that pixel grayscale values in CT images are not uniformly distributed and are actually highly clustered. Such discovery can be utilized as a powerful prior for CT reconstruction. In this paper, we leverage the collaborative filtering technique to enable the collaboration of the proposed prior and most existing regularizations, significantly enhancing the reconstruction accuracy. ResultsOur experiments show that the proposed method can work with most existing regularizations and significantly improve the reconstruction quality. Such improvement is most pronounced under limited‐angle and few‐view conditions. Furthermore, the proposed regularization also has the potential for further improvement and can be utilized in other image reconstruction areas. ConclusionsWe propose improving the performance of iterative CT reconstruction algorithms by applying the collaborative filtering technique along with a prior based on the densely clustered distribution of pixel grayscale values in CT images. Our experimental results indicate that the proposed methodology consistently enhances reconstruction accuracy when used in conjunction with most existing regularizations, particularly under few‐view and limited‐angle conditions.more » « less
-
Abstract This work introduces a novel approach for data-driven model reduction of time-dependent parametric partial differential equations. Using a multi-step procedure consisting of proper orthogonal decomposition, dynamic mode decomposition, and manifold interpolation, the proposed approach allows to accurately recover field solutions from a few large-scale simulations. Numerical experiments for the Rayleigh-Bénard cavity problem show the effectiveness of such multi-step procedure in two parametric regimes, i.e., medium and high Grashof number. The latter regime is particularly challenging as it nears the onset of turbulent and chaotic behavior. A major advantage of the proposed method in the context of time-periodic solutions is the ability to recover frequencies that are not present in the sampled data.more » « less
-
Wooden utility poles are one of the most commonly used utility carriers in North America. Even though they are given different protection treatments, wooden utility poles are prone to have defects that are mainly caused by temperature, oxygen, moisture, and high potential hydrogen levels after decades of being exposed in open-air areas. In order to meet the growing demand regarding their maintenance and replacement, an effective health evaluation technology for wooden utility poles is essential to ensure normal power supply and safety. However, the commonly used hole-drilling inspection method always causes extra damage to wooden utility poles and the precision of health evaluation highly relies on technician experience at present. Therefore, a non-destructive health evaluation method with frequency-modulated empirical mode decomposition (FM-EMD) and Laplace wavelet correlation filtering based on dynamic responses of wooden utility poles was proposed in this work. Specifically, FM-EMD was used to separate multiple confusing closely-spaced vibration modes due to nonlinear properties of wooden utility poles into several single modes. The instantaneous frequency and damping factor of the decomposed signal of each single mode of the dynamic response of a wooden utility pole could be determined using Laplace wavelet correlation filtering with high precision. The health status of a wooden utility pole could then be estimated according to the extracted instantaneous frequency and damping factor of the decomposed signal of each single mode. The proposed non-destructive health evaluation method for wooden utility poles was tested in the field and achieved successful results.more » « less
An official website of the United States government

