The rapid growth in technology and wide use of internet has increased smart applications such as intelligent transportation control system, and Internet of Things, which heavily rely on an efficient and reliable connectivity network. To overcome high bandwidth work load on the network, as well as minimize latency for real-time applications, the computation can be moved from the central cloud to a distributed edge cloud. The edge computing benefits various smart applications that uses distributed network for data analytics and services. Different from the existing cloud management solutions, edge computing needs to move cloud management services towards distributed heterogeneous edge nodes for multi-tenant user applications. However, existing cloud management services do not offer remote deployment of multi-tenant user applications on the cloud of edge nodes. In this paper, we propose a practical edge cloud software framework for deploying multi-tenant distributed smart applications. Having multiple distributed end nodes, auto discovery of all active end nodes is required for deploying multi-tenant user applications. However, existing cloud solutions require either private network or fixed IP address, which is not achievable for the distributed edge nodes. Most of the edge nodes connected through the public internet without fixed IP, and some of them even connect through IEEE 802.15 based sensor networks. We propose to build a software platform to manage the distributed edge nodes as well as support services to deploy and launch isolated, multi-tenant user applications through a lightweight container. We propose an architectural solution to remotely access edge cloud management services through intermittent internet connections. We open sourced our whole set of software solutions, and analyzed the major performance metrics of the edge cloud platform.
more »
« less
Software-Defined Edge Cloud Framework for Resilient Multitenant Applications
Edge application’s distributed nature presents significant challenges for developers in orchestrating and managing the multitenant applications. In this paper, we propose a practical edge cloud software framework for deploying multitenant distributed smart applications. Here we exploit commodity, a low cost embedded board to form distributed edge clusters. The cluster of geo-distributed and wireless edge nodes not only power multitenant IoT applications that are closer to the data source and the user, but also enable developers to remotely deploy and orchestrate application containers over the cloud. Specifically, we propose building a software platform to manage the distributed edge nodes along with support services to deploy and launch isolated and multitenant user applications through a lightweight container. In particular, we propose an architectural solution to improve the resilience of edge cloud services through peer collaborated service migration when the failures happen or when resources are overburdened. We focus on giving the developers a single point control of the infrastructure over the intermittent and lossy wide area networks (WANs) and enabling the remote deployment of multitenant applications.
more »
« less
- Award ID(s):
- 1637371
- PAR ID:
- 10092496
- Date Published:
- Journal Name:
- Wireless Communications and Mobile Computing
- Volume:
- 2019
- ISSN:
- 1530-8669
- Page Range / eLocation ID:
- 1 to 17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Serverless computing is a new cloud programming and deployment paradigm that is receiving wide-spread uptake. Serverless offerings such as Amazon Web Services (AWS) Lambda, Google Functions, and Azure Functions automatically execute simple functions uploaded by developers, in response to cloud-based event triggers. The serverless abstraction greatly simplifies integration of concurrency and parallelism into cloud applications, and enables deployment of scalable distributed systems and services at very low cost. Although a significant first step, the serverless abstraction requires tools that software engineers can use to reason about, debug, and optimize their increasingly complex, asynchronous applications. Toward this end, we investigate the design and implementation of GammaRay, a cloud service that extracts causal dependencies across functions and through cloud services, without programmer intervention. We implement GammaRay for AWS Lambda and evaluate the overheads that it introduces for serverless micro-benchmarks and applications written in Python.more » « less
-
Serverless computing is a promising new event- driven programming model that was designed by cloud vendors to expedite the development and deployment of scalable web services on cloud computing systems. Using the model, developers write applications that consist of simple, independent, stateless functions that the cloud invokes on-demand (i.e. elastically), in response to system-wide events (data arrival, messages, web requests, etc.). In this work, we present STOIC (Serverless TeleOperable HybrId Cloud), an application scheduling and deployment system that extends the serverless model in two ways. First, it uses the model in a distributed setting and schedules application functions across multiple cloud systems. Second, STOIC sup- ports serverless function execution using hardware acceleration (e.g. GPU resources) when available from the underlying cloud system. We overview the design and implementation of STOIC and empirically evaluate it using real-world machine learning applications and multi-tier (e.g. edge-cloud) deployments. We find that STOIC’s combined use of edge and cloud resources is able to outperform using either cloud in isolation for the applications and datasets that we consider.more » « less
-
In a world where the number of smart cities is growing exponentially, there is a myriad of IoT devices which are generating immense data, 24×7. Centralized cloud data centers responsible for handling this huge data are being rapidly replaced with distributed edge nodes which move the computation closer to the users to provide low latencies for real-time applications. The proposed enhancements capitalizes on this design and proposes an effective way to achieve fault tolerance in the system. The concept of docker container migration is used to provide a near-zero downtime system on a distributed edge cloud architecture. An intuitively simple and visually attractive dashboard design is also being presented in this paper to remotely access the edge cloud management services.more » « less
-
Edge computing is a distributed computing paradigm that moves data-intensive applications and services (e.g., AI) closer to the data source. The rapid growth of edge endpoints connected to the Internet today poses several challenges in scalable application life cycle management. That is, managing data and workloads on several thousand, up to millions of edge endpoints, challenged by limited connectivity, resource constraints, network and edge endpoint failures. In this work, we present EdgeRDV, a new edge abstraction that builds on the idea of rendezvous nodes to manage edge workloads at scale. The EdgeRDV architecture is comprised of a central cloud management endpoint (or cloud hub), a central gateway for each edge site (or edge hub), redundant gateways (or rendezvous nodes), and edge endpoints. Beyond its scalable architecture, EdgeRDV presents new techniques and algorithms that address single points of failures and provide adjustable levels of resilience and cost-effectiveness in edge network deployments. We conducted preliminary experiments to evaluate EdgeRDV, through simulations, and our results show that EdgeRDV requires one to three orders of magnitude fewer intermediate nodes compared to relay structures, can gracefully adapt to failures, and requires a constant number of messages during failure recovery in edge sites with up to 667K+ edge endpoints.more » « less
An official website of the United States government

