skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Image-based PDF Malware Detection Using Pre-trained Deep Neural Networks
PDF is a popular document file format with a flexible file structure that can embed diverse types of content, including images and JavaScript code. However, these features make it a favored vehicle for malware attackers. In this paper, we propose an image-based PDF malware detection method that utilizes pre-trained deep neural networks (DNNs). Specifically, we convert PDF files into fixed-size grayscale images using an image visualization technique. These images are then fed into pre-trained DNN models to classify them as benign or malicious. We investigated four classical pre-trained DNN models in our study. We evaluated the performance of the proposed method using the publicly available Contagio PDF malware dataset. Our results demonstrate that MobileNetv3 achieves the best detection performance with an accuracy of 0.9969 and exhibits low computational complexity, making it a promising solution for image-based PDF malware detection.  more » « less
Award ID(s):
2150145
PAR ID:
10507307
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2024 12th International Symposium on Digital Forensics and Security (ISDFS)
ISSN:
2768-1831
ISBN:
979-8-3503-3036-6
Page Range / eLocation ID:
1 to 5
Subject(s) / Keyword(s):
PDF malware deep learning pre-trained deep neural networks image visualization
Format(s):
Medium: X
Location:
San Antonio, TX, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. PDF, as one of most popular document file format, has been frequently utilized as a vector by attackers to covey malware due to its flexible file structure and the ability to embed different kinds of content. In this paper, we propose a new learning-based method to detect PDF malware using image processing and processing techniques. The PDF files are first converted to grayscale images using image visualization techniques. Then various image features representing the distinct visual characteristics of PDF malware and benign PDF files are extracted. Finally, learning algorithms are applied to create the classification models to classify a new PDF file as malicious or benign. The performance of the proposed method was evaluated using Contagio PDF malware dataset. The results show that the proposed method is a viable solution for PDF malware detection. It is also shown that the proposed method is more robust to resist reverse mimicry attacks than the state-of-art learning-based method. 
    more » « less
  2. null (Ed.)
    Transfer learning using pre-trained deep neural networks (DNNs) has been widely used for plant disease identification recently. However, pre-trained DNNs are susceptible to adversarial attacks which generate adversarial samples causing DNN models to make wrong predictions. Successful adversarial attacks on deep learning (DL)-based plant disease identification systems could result in a significant delay of treatments and huge economic losses. This paper is the first attempt to study adversarial attacks and detection on DL-based plant disease identification. Our results show that adversarial attacks with a small number of perturbations can dramatically degrade the performance of DNN models for plant disease identification. We also find that adversarial attacks can be effectively defended by using adversarial sample detection with an appropriate choice of features. Our work will serve as a basis for developing more robust DNN models for plant disease identification and guiding the defense against adversarial attacks. 
    more » « less
  3. Deformable image registration (DIR) is an active research topic in biomedical imaging. There is a growing interest in developing DIR methods based on deep learning (DL). A traditional DL approach to DIR is based on training a convolutional neural network (CNN) to estimate the registration field between two input images. While conceptually simple, this approach comes with a limitation that it exclusively relies on a pre-trained CNN without explicitly enforcing fidelity between the registered image and the reference. We present plug-and-play image registration network (PIRATE) as a new DIR method that addresses this issue by integrating an explicit data-fidelity penalty and a CNN prior. PIRATE pre-trains a CNN denoiser on the registration field and "plugs" it into an iterative method as a regularizer. We additionally present PIRATE+ that fine-tunes the CNN prior in PIRATE using deep equilibrium models (DEQ). PIRATE+ interprets the fixed-point iteration of PIRATE as a network with effectively infinite layers and then trains the resulting network end-to-end, enabling it to learn more task-specific information and boosting its performance. Our numerical results on OASIS and CANDI datasets show that our methods achieve state-of-the-art performance on DIR. 
    more » « less
  4. Malware detection and analysis can be a burdensome task for incident responders. As such, research has turned to machine learning to automate malware detection and malware family classification. Existing work extracts and engineers static and dynamic features from the malware sample to train classifiers. Despite promising results, such techniques assume that the analyst has access to the malware executable file. Self-deleting malware invalidates this assumption and requires analysts to find forensic evidence of malware execution for further analysis. In this paper, we present and evaluate an approach to detecting malware that executed on a Windows target and further classify the malware into its associated family to provide semantic insight. Specifically, we engineer features from the Windows prefetch file, a file system forensic artifact that archives process information. Results show that it is possible to detect the malicious artifact with 99% accuracy; furthermore, classifying the malware into a fine-grained family has comparable performance to techniques that require access to the original executable. We also provide a thorough security discussion of the proposed approach against adversarial diversity. 
    more » « less
  5. Artificial intelligence-based prostate cancer (PCa) detection models have been widely explored to assist clinical diagnosis. However, these trained models may generate erroneous results specifically on datasets that are not within training distribution. In this paper, we propose an approach to tackle this so-called out-of-distribution (OOD) data problem. Specifically, we devise an end-to-end unsupervised framework to estimate uncertainty values for cases analyzed by a previously trained PCa detection model. Our PCa detection model takes the inputs of bpMRI scans and through our proposed approach we identify OOD cases that are likely to generate degraded performance due to the data distribution shifts. The proposed OOD framework consists of two parts. First, an autoencoder-based reconstruction network is proposed, which learns discrete latent representations of in-distribution data. Second, the uncertainty is computed using perceptual loss that measures the distance between original and reconstructed images in the feature space of a pre-trained PCa detection network. The effectiveness of the proposed framework is evaluated on seven independent data collections with a total of 1,432 cases. The performance of pre-trained PCa detection model is significantly improved by excluding cases with high uncertainty. 
    more » « less