skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Causes and Consequences of Pleistocene Megafaunal Extinctions as Revealed from Rancho La Brea Mammals
The fossils preserved in the Rancho La Brea “tar” seeps in southern California span the past ∼50,000 years and provide a rare opportunity to assess the ecology of predators (e.g., the American lion, sabertooth cats, cougars, dire wolves, gray wolves, and coyotes), including clarifying the causes and consequences of the terminal Pleistocene extinction event. Here, a multi-proxy approach elucidates dietary responses of carnivorans to changing climates and megafaunal extinctions. Using sample sizes that are unavailable anywhere else in the world, including hundreds of carnivoran and herbivore specimens, we clarify the paleobiology of the extinct sabertooth cats and dire wolves—overturning the idea that they heavily competed for similar prey. Canids (especially the dire wolf) consumed prey from more open environments than felids, demonstrating minimal competition for prey throughout the latest Pleistocene and largely irrespective of changing climates, including just prior to their extinction. Coyotes experienced a dramatic shift in dietary behavior toward increased carcass utilization and the consumption of forest resources (prey and/or plant resources) after the terminal Pleistocene megafaunal extinction. Extant predators’ ability to effectively hunt smaller prey and/or utilize carcasses may have been a key to their survival, especially after a significant reduction in megafaunal prey resources. Collectively, these data suggest that dietary niches of carnivorans are not always static and can instead be substantially affected by the removal of top predators and abundant prey resources.  more » « less
Award ID(s):
1757545
PAR ID:
10507308
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Science Direct
Date Published:
Journal Name:
Current Biology
Volume:
29
Issue:
15
ISSN:
0960-9822
Page Range / eLocation ID:
2488 to 2495.e2
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Studies of Rancho La Brea predators have yielded disparate dietary interpretations when analyzing bone collagen vs. enamel carbonate—requiring a better understanding of the relationship between stable carbon isotopes in these tissues. Stable carbon isotope spacing between collagen and carbonate (Δ ca-co ) has also been used as a proxy for inferring the trophic level of mammals, with higher Δ ca-co values indicative of high carbohydrate consumption. To clarify the stable isotope ecology of carnivorans, past and present, we analyzed bone collagen (carbon and nitrogen) and enamel carbonate (carbon) of extinct and extant North American felids and canids, including dire wolves, sabertooth cats, coyotes, and pumas, supplementing these with data from African wild dogs and African lions. Our results reveal that Δ ca-co values are positively related to enamel carbonate values in secondary consumers and are less predictive of trophic level. Results indicate that the foraging habitat and diet of prey affects Δ ca-co in carnivores, like herbivores. Average Δ ca-co values in Pleistocene canids (8.7+/−1‰) and felids (7.0+/−0.7‰) overlap with previously documented extant herbivore Δ ca-co values suggesting that trophic level estimates may be relative to herbivore Δ ca-co values in each ecosystem and not directly comparable between disparate ecosystems. Physiological differences between felids and canids, ontogenetic dietary differences, and diagenesis at Rancho La Brea do not appear to be primary drivers of Δ ca-co offsets. Environmental influences affecting protein and fat consumption in prey and subsequently by predators, and nutrient routing to tissues may instead be driving Δ ca-co offsets in extant and extinct mammals. 
    more » « less
  2. null (Ed.)
    Understanding how mesopredators manage the risks associated with apex predators is key to explaining impacts of apex predators on mesopredator populations and patterns of mesopredator space use. Here we examine the spatial response of coyotes (Canis latrans Say, 1823) to risk posed by wolves (Canis lupus Linnaeus, 1758) using data from sympatric individuals fitted with GPS collars in subarctic Alaska, USA, near the northern range limit for coyotes. We show that coyotes do not universally avoid wolves, but instead demonstrate season-specific responses to both wolf proximity and long-term use of the landscape by wolves. Specifically, coyotes switched from avoiding wolves in summer to preferring areas with wolves in winter, and this selection was consistent across short-term and longer term temporal scales. In the summer, coyotes responded less strongly to risk of wolves when in open areas than when in closed vegetation. We also demonstrate that coyotes maintain extremely large territories averaging 291 km 2 , and experience low annual survival (0.50) with large carnivores being the largest source of mortality. This combination of attraction and avoidance predicated on season and landcover suggests that mesopredators use complex behavioral strategies to mediate the effects of apex predators. 
    more » « less
  3. Apex predators exert suppressive effects on mesocarnivores; however, they also provide important carrion subsidies. Optimal foraging theory predicts that individuals respond to resource competition by using high-value resources, while competition theory predicts that individuals respond by partitioning resources. This study investigated how the return of wolves ( Canis lupus Linneas, 1758) to Washington state impacted the diet of a subordinate carnivore—the coyote ( Canis latrans Say, 1823). We collected coyote scats from two areas of northern Washington with differing wolf densities and used traditional analysis of undigested remains to infer diet. We tested for differences in the volumes of prey categories, the proportion of ungulate prey that was scavenged, and diet diversity between seasons, study sites, and inside and outside of wolf pack territories. Coyote scats contained more adult ungulate remains inside of wolf pack territories (27%) compared to outside (14%), while seeds and berries were more commonly consumed outside of wolf pack territories (23%) than inside of wolf pack territories (4%). These findings suggest that coyotes are taking advantage of wolf kills to increase ungulate carrion consumption, as predicted by optimal foraging theory, which may substantially affect plant and wildlife communities as wolves continue to recover and coyote diets shift in response. 
    more » « less
  4. Abstract Pleistocene diversity was much higher than today, for example there were three distinct wolf morphotypes (dire, gray, Beringian) in North America versus one today (gray). Previous fossil evidence suggested that these three groups overlapped ecologically, but split the landscape geographically. The Natural Trap Cave (NTC) fossil site in Wyoming,USAis an ideally placed late Pleistocene site to study the geographical movement of species from northern to middle North America before, during, and after the last glacial maximum. Until now, it has been unclear what type of wolf was present atNTC. We analyzed morphometrics of three wolf groups (dire, extant North American gray, Alaskan Beringian) to determine which wolves were present atNTCand what this indicates about wolf diversity and migration in Pleistocene North America. Results showNTCwolves group with Alaskan Beringian wolves. This provides the first morphological evidence for Beringian wolves in mid‐continental North America. Their location atNTCand their radiocarbon ages suggest that they followed a temporary channel through the glaciers. Results suggest high levels of competition and diversity in Pleistocene North American wolves. The presence of mid‐continental Beringian morphotypes adds important data for untangling the history of immigration and evolution ofCanisin North America. 
    more » « less
  5. The Plio-Pleistocene regional mass extinction of molluscan fauna of Florida and the US Atlantic coastal plain was followed by a period of rapid origination, resulting in similar modern regional species richness. Predator and prey relationships were impacted by high extinction rates across all taxa. Previous studies have suggested that the extinction is associated with a possible system-wide decline in predation intensity, but data from additional prey species both prior to and after the extinctions are needed to determine how general this pattern may be. We examined predatory trace fossils on turritellid gastropods, a clade which experienced substantial extinction during this time. Overall rates of peeling predation on turritellid gastropods across the extinction boundary decreased – with turritellid species having an average peel-repair frequency of 0.41 in the Plio-Pleistocene compared to a frequency of 0.16 in modern samples. However, in the two surviving lineages, Turritella perexilis and Torcula exoleta, peel-repair frequency was similar in the Plio-Pleistocene samples and in modern samples. Fossil T. perexilis had a peel frequency of 0.26, compared to the modern samples’ peeling frequency of 0.14. Fossil T. perattenuata had a peeling frequency of 0.18, while its descendant, T. exoleta, had a peeling frequency of 0.17. Additionally, the incidence of multiple attacks in modern samples is markedly lower. While a majority (89%) of turritellid species went extinct during this event, most fossil species had higher peel-repair frequencies than fossils of the surviving lineages. In contrast with peeling frequency, the frequency of drilling predation on modern descendants is higher than their fossil ancestors (0.21 vs 0.02 and 0.14 vs. 0.11 for T. exoleta/T. perattenuata and T. perexilis, respectively). Across all species, drilling increased from an average of 0.11 in the Plio-Pleistocene samples to 0.19 in modern samples. These results suggest that as turritellid prey diversity decreased, predators may have adapted to attack surviving species, or these lineages may have become more vulnerable to their predators. 
    more » « less