A tunable interband cascade laser sensor, based on wavelength modulation absorption spectroscopy near 3.73 µm, was developed to measure hydrogen chloride gas concentration in smoke-laden environments associated with the overhaul stages of firefighting. Wavelength selection near 2678cm−1targets the P(0,9) transition within the fundamental vibrational band of HCl, chosen for its absorption strength and isolation from CO2, H2O, and CH4, as well as proximity to absorption features of other toxicant gases of interest in firefighting applications. Both scanned-wavelength direct absorption with a Voigt lineshape-fitting routine and a wavelength modulation spectroscopy absorption method are employed to recover species concentration. The laser sensor is paired with a compact commercial off-the-shelf 1 m multipass optical gas cell modified to use polished Alloy 20 steel mirrors for increased corrosion resistance against humid and acidic gases, and it is tested by sampling effluent gases from pyrolyzing and burning solid samples of polyvinyl chloride under a radiant heating apparatus in a laboratory fume hood. The wavelength modulation spectroscopy method is demonstrated to enable measurement at the near-ppm-level within a compact form-factor and to provide insights into the thermochemical pyrolysis processes that lead to the formation of hydrogen chloride when polyvinyl chloride is exposed to radiant heating.
more »
« less
Hysteretic wavelength selection in isometric, unsupported radial wrinkling
Wavelength selection in supported elastic sheets is well understood. Here, we claim that wavelength selection in an unsupported contracted annulus is set by a novel mechanism of kinetically arrested coarsening.
more »
« less
- Award ID(s):
- 2011854
- PAR ID:
- 10507484
- Publisher / Repository:
- The Royal Society of Chemistry
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 19
- Issue:
- 29
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 5551 to 5559
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Most chiral metamaterials and metasurfaces are designed to operate in a single wavelength band and with a certain circular dichroism (CD) value. Here, mid-infrared chiral metasurface absorbers with selective CD in dual-wavelength bands are designed and demonstrated. The dual-band CD selectivity and tunability in the chiral metasurface absorbers are enabled by the unique design of a unit cell with two coupled rectangular bars. It is shown that the sign of CD in each wavelength band can be independently controlled and flipped by simply adjusting the geometric parameters, the width and the length, of the vertical rectangular bars. The mechanism of the dual-band CD selection in the chiral metasurface absorber is further revealed by studying the electric field and magnetic field distributions of the antibonding and bonding modes supported in the coupled bars under circularly polarized incident light. Furthermore, the chiral resonance wavelength can be continuously increased by scaling up the geometric parameters of the metasurface unit cell. The demonstrated results will contribute to the advance of future mid-infrared applications such as chiral molecular sensing, thermophotovoltaics, and optical communication.more » « less
-
Nonreciprocal magnon propagation has recently become a highly potential approach of developing chip-embedded microwave isolators for advanced information processing. However, it is challenging to achieve large nonreciprocity in miniaturized magnetic thin-film devices because of the difficulty of distinguishing propagating surface spin waves along the opposite directions when the film thickness is small. In this work, we experimentally realize unidirectional microwave transduction with sub-micrometer-wavelength propagating magnons in a yttrium iron garnet (YIG) thin-film delay line. We achieve a non-decaying isolation of 30 dB with a broad field-tunable bandpass frequency range up to 14 GHz. The large isolation is due to the selection of chiral magnetostatic surface spin waves with the Oersted field generated from the coplanar waveguide antenna. Increasing the geometry ratio between the antenna width and YIG thickness drastically reduces the nonreciprocity and introduces additional magnon transmission bands. Our results pave the way for on-chip microwave isolation and tunable delay line with short-wavelength magnonic excitations.more » « less
-
Abstract Hyperspectral reflectance can potentially be used to non‐destructively estimate a diverse suite of plant physiochemical functional traits by applying chemometric approaches to leverage absorption features related to chemical compounds and physiological processes associated with these traits. This approach has considerable implications in advancing plant physiological and chemical ecology. For complex functional traits, however, there is a lack of well‐defined absorption features and features may be unevenly distributed across the reflectance spectrum, suggesting that the influence of wavelength ranges on the performance of chemometric models is potentially important for accurately estimating foliar functional traits.Here, we investigate the influence of spectral ranges on the performance of models estimating six tree functional traits: CO2assimilation rate, specific leaf area, leaf water content and concentrations of foliar nitrogen, sugars and gallic acid. Using data collected from multiple different experiments, we quantified plant functional trait responses using standard reference measurements and paired them with proximal leaf‐level hyperspectral reflectance measurements spanning the wavelength range of 400–2400 nm. A total of 100 different wavelength range combinations were evaluated using partial least squares regression to determine the influence of wavelength range on model performance.We found that the influence of starting or ending wavelength on model performance was trait specific and better model outcomes were achieved when the starting and ending wavelengths encompassed absorption features associated with the specific leaf trait modelled. Interestingly, we found that including shortwave‐infrared wavelength ranges (1300–2500 nm) improved performance for all trait models.Collectively, our findings underscore the importance of optimal spectral range selection in enhancing the accuracy of chemometric models for specific foliar trait estimates. An emergent outcome of this work is that the approach can be used to (1) identify the important spectral features of traits that currently lack known absorption features or have multiple or weak absorption features, (2) expand the current suite of plant functional traits that can be estimated using spectroscopy and (3) ultimately advance the integration of a spectral biology approach in ecological research.more » « less
-
Abstract Visual sensitivity and body pigmentation are often shaped by both natural selection from the environment and sexual selection from mate choice. One way of quantifying the impact of the environment is by measuring how traits have changed after colonization of a novel habitat. To do this, we studiedPoecilia mexicanapopulations that have repeatedly adapted to extreme sulphidic (H2S‐containing) environments. We measured visual sensitivity using opsin gene expression, as well as body pigmentation, for populations in four independent drainages. Both visual sensitivity and body pigmentation showed significant parallel shifts towards greater medium‐wavelength sensitivity and reflectance in sulphidic populations. Altogether we found that sulphidic habitats select for differences in visual sensitivity and pigmentation. Shifts between habitats may be due to both differences in the water's spectral properties and correlated ecological changes.more » « less
An official website of the United States government

