This study explores the latent thermal energy storage potential of an organic phase change material with porous copper foam and its applicability in electronic cooling under varying heat load conditions. The organic phase change material, n-eicosane, is known for its inherently low thermal conductivity of 0.15 W/mK, rendering it vulnerable during power spikes despite its abundant latent heat energy for phase transition from solid to liquid. Porous copper foams are often integrated into n-eicosane to enhance the composite’s thermal conductivity. However, the volume fraction of the phase change material in the porous foam that optimally improves the thermal performance can be dependent on the boundary condition, the cut-off temperature, and the thickness. A finite difference numerical model was developed and utilized to ascertain the energy consumption for the composite of n-eicosane with two kinds of porous copper foam with varying porosity under different heat rates, cut-off temperatures, and thickness. In addition, the results are compared with a metallic phase change material (gallium), a material chosen with a similar melting point but significantly high thermal conductivity and volumetric latent heat. For validation of the numerical model and to experimentally verify the effect of boundary condition (heat rate), experimental investigation was performed for n-eicosane and high porosity copper foam composite at varying heat rates to observe its melting and solidification behaviors during continuous operation until a cut-off temperature of 70 ◦C is reached. Experiments reveal that heat rate influences the amount of latent energy storage capability until a cutoff temperature is reached. For broad comparison, the numerical model was used to obtain the accessed energy and power density and generate thermal Ragone plots to compare and characterize pure gallium and n-eicosane - porous foam composite with varying volume fractions, cutoff temperature, and thickness under volumetric and gravimetric constraints. Overall, the proposed framework in the form of thermal Ragone plots effectively delineates the optimal points for various combinations of heat rate, cutoff point, and aspect ratio, affirming its utility for comprehensive design guidelines for PCM-based composites for electronic cooling applications
more »
« less
Multi-Fidelity Design of Porous Microstructures for Thermofluidic Applications
As modern electronic devices are increasingly miniaturized and integrated, their performance relies more heavily on effective thermal management. In this regard, two-phase cooling methods which capitalize on thin-film evaporation atop structured porous surfaces are emerging as potential solutions. In such porous structures, the optimum heat dissipation capacity relies on two competing objectives that depend on mass and heat transfer. Optimizing these objectives for effective thermal management is challenging due to the simulation costs and the high dimensionality of the design space which is often a voxelated microstructure representation that must also be manufacturable. We address these challenges by developing a data-driven framework for designing optimal porous microstructures for cooling applications. In our framework, we leverage spectral density functions to encode the design space via a handful of interpretable variables and, in turn, efficiently search it. We develop physics-based formulas to simulate the thermofluidic properties and assess the feasibility of candidate designs based on offline image-based analyses. To decrease the reliance on expensive simulations, we generate multi-fidelity data and build emulators to find Pareto-optimal designs. We apply our approach to a canonical problem on evaporator wick design and obtain fin-like topologies in the optimal microstructures which are also characteristics often observed in industrial applications.
more »
« less
- Award ID(s):
- 2045322
- PAR ID:
- 10507658
- Publisher / Repository:
- ASME
- Date Published:
- Journal Name:
- Journal of Mechanical Design
- Volume:
- 146
- Issue:
- 10
- ISSN:
- 1050-0472
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract To fulfill the increasing demands of data storage and data processing within modern data centers, a corresponding increase in server performance is necessary. This leads to a subsequent increase in power consumption and heat generation in the servers due to high performance processing units. Currently, air cooling is the most widely used thermal management technique in data centers, but it has started to reach its limitations in cooling of high-power density packaging. Therefore, industries utilizing data centers are looking to singlephase immersion cooling using various dielectric fluids to reduce the operational and cooling costs by enhancing the thermal management of servers. In this study, heat sinks with TPMS lattice structures were designed for application in singlephase immersion cooling of data center servers. These designs are made possible by Electrochemical Additive Manufacturing (ECAM) technology due to their complex topologies. The ECAM process allows for generation of complex heat sink geometries never before possible using traditional manufacturing processes. Geometric complexities including amorphous and porous structures with high surface area to volume ratio enable ECAM heat sinks to have superior heat transfer properties. Our objective is to compare various heat sink geometries by minimizing chip junction temperature in a single-phase immersion cooling setup for natural convection flow regimes. Computational fluid dynamics in ANSYS Fluent is utilized to compare the ECAM heat sink designs. The additively manufactured heat sink designs are evaluated by comparing their thermal performance under natural convection conditions. This study presents a novel approach to heat sink design and bolsters the capability of ECAM-produced heat sinks.more » « less
-
Abstract This work presents an approach to optimally designing a composite with thermal conductivity enhancers infiltrated with phase change material based on figure of merit (FOM) for thermal management of portable electronic devices. The FOM defines the balance between effective thermal conductivity and energy storage capacity. In this study, thermal conductivity enhancers are in the form of a honeycomb structure. Thermal conductivity enhancers are often used in conjunction with phase change material to enhance the conductivity of the composite medium. Under constrained heat sink volume, the higher volume fraction of thermal conductivity enhancers improves the effective thermal conductivity of the composite, while it reduces the amount of latent heat storage simultaneously. This work arrives at the optimal design of composite for electronic cooling by maximizing the FOM to resolve the stated tradeoff. In this study, the total volume of the composite and the interfacial heat transfer area between the phase change material and thermal conductivity enhancers are constrained for all design points. A benchmarked two-dimensional direct computational fluid dynamics model was employed to investigate the thermal performance of the phase change material and thermal conductivity enhancer composite. Furthermore, assuming conduction-dominated heat transfer in the composite, a simplified effective numerical model that solves the single energy equation with the effective properties of the phase change material and thermal conductivity enhancer has been developed. The effective properties like heat capacity can be obtained by volume averaging; however, effective thermal conductivity (required to calculate FOM) is unknown. The effective thermal conductivity of the composite is obtained by minimizing the error between the transient temperature gradient of direct and simplified model by iteratively varying the effective thermal conductivity. The FOM is maximized to find the optimal volume fraction for the present design.more » « less
-
Thermoelectric active cooling uses nontraditional thermoelectric materials with high thermal conductivity, high thermoelectric power factor, and relatively low figure of merit (ZT) to transfer large heat flows from a hot object to a cold heat sink. However, prior studies have not considered the influence of external thermal resistances associated with the heat sinks or contacts, making it difficult to design active cooling thermal systems or compare the use of low-ZT and high-ZT materials. Here, we perform a non-dimensionalized analysis of thermoelectric active cooling under forced heat flow boundary conditions, including arbitrary external thermal resistances. We identify the optimal electrical currents to minimize the heat source temperature and find the crossover heat flows at which low-ZT active cooling leads to lower source temperatures than high-ZT and even ZT→+∞ thermoelectric refrigeration. These optimal parameters are insensitive to the thermal resistance between the heat source and thermoelectric materials, but depend strongly on the heat sink thermal resistance. Finally, we map the boundaries where active cooling yields lower source temperatures than thermoelectric refrigeration. For currently considered active cooling materials, active cooling with ZT < 0.1 is advantageous compared to ZT→+∞ refrigeration for dimensionless heat sink thermal conductances larger than 15 and dimensionless source powers between 1 and 100. Thus, our results motivate further investigation of system-level thermoelectric active cooling for applications in electronics thermal management.more » « less
-
Two-phase thermal management offers cooling performance enhancement by an order of magnitude higher than single-phase flow due to the latent heat associated with phase change. Among the modes of phase-change, boiling can effectively remove massive amounts of heat flux from the surface by employing structured or 3D microporous coatings to significantly enlarge the interfacial surface area for improved heat transfer rate as well as increase the number of potential sites for bubble nucleation and departure. The bubble dynamics during pool boiling are often considered to be essential in predicting heat transfer performance, causing it to be a field of significant interest. While prior investigations seek to modulate the bubble dynamics through either active (e.g., surfactants, electricity) or passive means (e.g., surface wettability, microstructures), the utilization of an ordered microporous architecture to instigate desirable liquid and vapor flow field has been limited. Here, we investigate the bubble dynamics using various spatial patterns of inverse opal channels to induce preferential heat and mass flow site in highly-interconnected microporous media. A fully-coated inverse opal surface demonstrates the intrinsic boiling effects of a uniform microporous coating, which exhibits 156% enhancement in heat transfer coefficient in comparison to the polished silicon surface. The boiling heat transfer performances of spatially-variant inverse opal channels significantly differ based on the pitch spacings between the microporous channels, which dictate the bubble coalescent behaviors and bubble departure characteristics. The elucidated boiling heat transfer performances will provide engineering guidance toward designing optimal two-phase thermal management devices.more » « less
An official website of the United States government

