skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adaptive multi-spectral mimicking with 2D-material nanoresonator networks
Abstract Active nanophotonic materials that can emulate and adapt between many different spectral profiles—with high fidelity and over a broad bandwidth—could have a far-reaching impact, but are challenging to design due to a high-dimensional and complex design space. Here, we show that a metamaterial network of coupled 2D-material nanoresonators in graphene can adaptively match multiple complex absorption spectra via a set of input voltages. To design such networks, we develop a semi-analytical auto-differentiable dipole-coupled model that allows scalable optimization of high-dimensional networks with many elements and voltage signals. As a demonstration of multi-spectral capability, we design a single network capable of mimicking four spectral targets resembling select gases (nitric oxide, nitrogen dioxide, methane, nitrous oxide) with very high fidelity ( > 90 % ). Our results could impact the design of highly reconfigurable optical materials and platforms for applications in sensing, communication and display technology, and signature and thermal management.  more » « less
Award ID(s):
2011401
PAR ID:
10507841
Author(s) / Creator(s):
; ;
Publisher / Repository:
IOP Publishing
Date Published:
Journal Name:
Journal of Optics
Volume:
26
Issue:
7
ISSN:
2040-8978
Format(s):
Medium: X Size: Article No. 075001
Size(s):
Article No. 075001
Sponsoring Org:
National Science Foundation
More Like this
  1. AbstractAn oblique helicoidal state of a cholesteric liquid crystal (ChOH) is capable of continuous change of the pitch$$P$$ P in response to an applied electric field. Such a structure reflects 50% of the unpolarized light incident along the ChOHaxis in the electrically tunable band determined by$$P$$ P /2. Here, we demonstrate that at an oblique incidence of light, ChOHreflects 100% of light of any polarization. This singlet band of total reflection is associated with the full pitch$$P$$ P . We also describe the satellite$$P/2$$ P / 2 ,$$P/3$$ P / 3 , and$$P/4$$ P / 4 bands. The$$P/2$$ P / 2 and$$P/4$$ P / 4 bands are triplets, whereas$$P/3$$ P / 3 band is a singlet caused by multiple scatterings at$$P$$ P and$$P/2$$ P / 2 . A single ChOHcell acted upon by an electric field tunes all these bands in a very broad spectral range, from ultraviolet to infrared and beyond, thus representing a structural color device with enormous potential for optical and photonic applications. Impact statementPigments, inks, and dyes produce colors by partially consuming the energy of light. In contrast, structural colors caused by interference and diffraction of light scattered at submicrometer length scales do not involve energy losses, which explains their widespread in Nature and the interest of researchers to develop mimicking materials. The grand challenge is to produce materials in which the structural colors could be dynamically tuned. Among the oldest known materials producing structural colors are cholesteric liquid crystals. Light causes coloration by selective Bragg reflection at the periodic helicoidal structure formed by cholesteric molecules. The cholesteric pitch and thus the color can be altered by chemical composition or by temperature, but, unfortunately, dynamic tuning by electromagnetic field has been elusive. Here, we demonstrate that a cholesteric material in a new oblique helicoidal ChOHstate could produce total reflection of an obliquely incident light of any polarization. The material reflects 100% of light within a band that is continuously tunable by the electric field through the entire visible spectrum while preserving its maximum efficiency. Broad electric tunability of total reflection makes the ChOHmaterial suitable for applications in energy-saving smart windows, transparent displays, communications, lasers, multispectral imaging, and virtual and augmented reality. Graphical Abstract 
    more » « less
  2. We employ matrix product states (MPS) and tensor networks to study topological properties of the space of ground states of gapped many-body systems. We focus on families of states in one spatial dimension, where each state can be represented as an injective MPS of finite bond dimension. Such states are short-range entangled ground states of gapped local Hamiltonians. To such parametrized families overX X we associate a gerbe, which generalizes the line bundle of ground states in zero-dimensional families ( in few-body quantum mechanics). The nontriviality of the gerbe is measured by a class inH^3(X, \Z), which is believed to classify one-dimensional parametrized systems. We show that when the gerbe is nontrivial, there is an obstruction to representing the family of ground states with an MPS tensor that is continuous everywhere onX X . We illustrate our construction with two examples of nontrivial parametrized systems overX=S^3 X = S 3 andX = \R P^2 × S^1. Finally, we sketch using tensor network methods how the construction extends to higher dimensional parametrized systems, with an example of a two-dimensional parametrized system that gives rise to a nontrivial 2-gerbe overX = S^4 X = S 4
    more » « less
  3. AbstractThe characterization of normal mode (CNM) procedure coupled with an adiabatic connection scheme (ACS) between local and normal vibrational modes, both being a part of the Local Vibrational Mode theory developed in our group, can identify spectral changes as structural fingerprints that monitor symmetry alterations, such as those caused by Jahn-Teller (JT) distortions. Employing the PBE0/Def2-TZVP level of theory, we investigated in this proof-of-concept study the hexaaquachromium cation case,$$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ [ Cr ( OH 2 ) 6 ] 3 + /$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ [ Cr ( OH 2 ) 6 ] 2 + , as a commonly known example for a JT distortion, followed by the more difficult ferrous and ferric hexacyanide anion case,$$\mathrm {[Fe{(CN)}_6]^{4-}}$$ [ Fe ( CN ) 6 ] 4 - /$$\mathrm {[Fe{(CN)}_6]^{3-}}$$ [ Fe ( CN ) 6 ] 3 - . We found that in both cases CNM of the characteristic normal vibrational modes reflects delocalization consistent with high symmetry and ACS confirms symmetry breaking, as evidenced by the separation of axial and equatorial group frequencies. As underlined by the Cremer-Kraka criterion for covalent bonding, from$$\mathrm {[Cr{(OH_2)}_6]^{3+}}$$ [ Cr ( OH 2 ) 6 ] 3 + to$$\mathrm {[Cr{(OH_2)}_6]^{2+}}$$ [ Cr ( OH 2 ) 6 ] 2 + there is an increase in axial covalency whereas the equatorial bonds shift toward electrostatic character. From$$\mathrm {[Fe{(CN)}_6]^{4-}}$$ [ Fe ( CN ) 6 ] 4 - to$$\mathrm {[Fe{(CN)}_6]^{3-}}$$ [ Fe ( CN ) 6 ] 3 - we observed an increase in covalency without altering the bond nature. Distinct$$\pi $$ π back-donation disparity could be confirmed by comparison with the isolated CN$$^-$$ - system. In summary, our study positions the CNM/ACS protocol as a robust tool for investigating less-explored JT distortions, paving the way for future applications. Graphical abstractThe adiabatic connection scheme relates local to normal modes, with symmetry breaking giving rise to axial and equatorial group local frequencies 
    more » « less
  4. Abstract In the (special) smoothing spline problem one considers a variational problem with a quadratic data fidelity penalty and Laplacian regularization. Higher order regularity can be obtained via replacing the Laplacian regulariser with a poly-Laplacian regulariser. The methodology is readily adapted to graphs and here we consider graph poly-Laplacian regularization in a fully supervised, non-parametric, noise corrupted, regression problem. In particular, given a dataset$$\{x_i\}_{i=1}^n$$ { x i } i = 1 n and a set of noisy labels$$\{y_i\}_{i=1}^n\subset \mathbb {R}$$ { y i } i = 1 n R we let$$u_n{:}\{x_i\}_{i=1}^n\rightarrow \mathbb {R}$$ u n : { x i } i = 1 n R be the minimizer of an energy which consists of a data fidelity term and an appropriately scaled graph poly-Laplacian term. When$$y_i = g(x_i)+\xi _i$$ y i = g ( x i ) + ξ i , for iid noise$$\xi _i$$ ξ i , and using the geometric random graph, we identify (with high probability) the rate of convergence of$$u_n$$ u n togin the large data limit$$n\rightarrow \infty $$ n . Furthermore, our rate is close to the known rate of convergence in the usual smoothing spline model. 
    more » « less
  5. Abstract Two-dimensional electron systems subjected to high transverse magnetic fields can exhibit Fractional Quantum Hall Effects (FQHE). In the GaAs/AlGaAs 2D electron system, a double degeneracy of Landau levels due to electron-spin, is removed by a small Zeeman spin splitting,$$g \mu _B B$$ g μ B B , comparable to the correlation energy. Then, a change of the Zeeman splitting relative to the correlation energy can lead to a re-ordering between spin polarized, partially polarized, and unpolarized many body ground states at a constant filling factor. We show here that tuning the spin energy can produce fractionally quantized Hall effect transitions that include both a change in$$\nu$$ ν for the$$R_{xx}$$ R xx minimum, e.g., from$$\nu = 11/7$$ ν = 11 / 7 to$$\nu = 8/5$$ ν = 8 / 5 , and a corresponding change in the$$R_{xy}$$ R xy , e.g., from$$R_{xy}/R_{K} = (11/7)^{-1}$$ R xy / R K = ( 11 / 7 ) - 1 to$$R_{xy}/R_{K} = (8/5)^{-1}$$ R xy / R K = ( 8 / 5 ) - 1 , with increasing tilt angle. Further, we exhibit a striking size dependence in the tilt angle interval for the vanishing of the$$\nu = 4/3$$ ν = 4 / 3 and$$\nu = 7/5$$ ν = 7 / 5 resistance minima, including “avoided crossing” type lineshape characteristics, and observable shifts of$$R_{xy}$$ R xy at the$$R_{xx}$$ R xx minima- the latter occurring for$$\nu = 4/3, 7/5$$ ν = 4 / 3 , 7 / 5 and the 10/7. The results demonstrate both size dependence and the possibility, not just of competition between different spin polarized states at the same$$\nu$$ ν and$$R_{xy}$$ R xy , but also the tilt- or Zeeman-energy-dependent- crossover between distinct FQHE associated with different Hall resistances. 
    more » « less