Abstract Mixed‐phase clouds contribute to substantial uncertainties in global climate models due to their complex microphysical properties. Former model evaluations almost exclusively rely on satellite observations to assess cloud phase distributions globally. This study investigated mixed‐phase cloud properties using near global‐scale in situ observation data sets from 14 flight campaigns in combination with collocated output from a global climate model. The Southern Hemisphere (SH) shows significantly higher occurrence frequencies and higher mass fractions of supercooled liquid water than Northern Hemisphere (NH) based on observations at 0.2 and 100 km horizontal scales. Such hemispheric asymmetry is not captured by the model. The model also consistently overestimates liquid water content (LWC) in all cloud phases but shows ice water content (IWC) biases that vary with phase. Key processes contributing to model biases in phase partition can be identified through the combination of evaluation of phase frequency, liquid mass fraction, LWC and IWC.
more »
« less
Validation of Satellite‐Based Cloud Phase Distributions Using Global‐Scale In Situ Airborne Observations
Abstract Understanding distributions of cloud thermodynamic phases is important for accurately representing cloud radiative effects and cloud feedback in a changing climate. Satellite‐based cloud phase data have been frequently used to compare with climate models, yet few studies validated them against in situ observations at a near‐global scale. This study aims to validate three satellite‐based cloud phase products using a compositive in situ airborne data set developed from 11 flight campaigns. Latitudinal‐altitudinal cross sections of cloud phase occurrence frequencies are examined. The Cloud–Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) show the most similar vertical profiles of ice phase frequencies compared with in situ observations. The CloudSat data overestimate mixed‐phase frequencies up to 15 km but provide better sampling through cloud layers than lidar data. The DARDAR (raDAR/liDAR) data show a sharp transition between ice and liquid phase and overestimate ice phase frequency at most altitudes and latitudes. The satellite data are further evaluated for various latitudes, longitudes, and seasons, which show higher ice phase frequency in the extratropics in their respective wintertime and smaller impacts from longitudinal variations. The Southern Ocean shows a thicker mixing region where liquid and ice phases have similar frequencies compared with tropics and Northern Hemisphere (NH) extratropics. Two comparison methods with different spatiotemporal windows show similar results, which demonstrates the statistical robustness of these comparisons. Overall, this study develops a near global‐scale in situ observational data set to assess the accuracy of satellite‐based cloud phase products and investigates the key factors affecting the distributions of cloud phases.
more »
« less
- Award ID(s):
- 1744965
- PAR ID:
- 10507894
- Publisher / Repository:
- Wiley Publishing - AGU journals
- Date Published:
- Journal Name:
- Earth and Space Science
- Volume:
- 11
- Issue:
- 5
- ISSN:
- 2333-5084
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Global cloud coverage has a substantial impact on local and global radiative budgets. It is necessary to correctly represent clouds in numerical weather models to improve both weather and climate predictions. This study evaluates in situ airborne observations of cloud microphysical properties and compares results with the Weather Research and Forecasting model (WRF) and Community Atmosphere Model version 5 (CAM5). Dynamical conditions producing supersaturated conditions with respect to ice at high altitudes in regions diagnosed by convective activity are explored using observations taken from the Deep Convective Clouds and Chemistry (DC3) campaign, and results are compared with simulated data from WRF. The WRF analysis tests multiple cloud microphysics schemes and finds the model requires much stronger updrafts to initiate large magnitudes of ice supersaturation (ISS) relative to observations. This is primarily due to the microphysics schemes over-predicting ice particle number concentrations (Ncice), which rapidly deplete the available water vapor. The frequency of different cloud phases and the distribution of relative humidity (RH) over the Southern Ocean is explored using in situ airborne observations taken from the O2/N2 Ratio and CO2 Airborne Southern Ocean Study (ORCAS) and compared with simulated data from CAM5. The CAM5 simulations produce comparable distributions of RH in clear-sky conditions at warmer temperatures (>-20°C). However, simulations fail to capture high frequencies of clear-sky ISS at colder temperatures (< 40°C). In addition, CAM5 underestimates the frequency of subsaturated conditions within ice phase clouds from -40°‒0°C.more » « less
-
Abstract. The onset of ice nucleation in mixed-phase clouds determines the lifetime and microphysical properties of ice clouds. In this work, we develop a novel method that differentiates between various phases of mixed-phase clouds, such as clouds dominated by pure liquid or pure ice segments, compared with those having ice crystals surrounded by supercooled liquid water droplets or vice versa. Using this method, we examine the relationship between the macrophysical and microphysical properties of Southern Ocean mixed-phase clouds at −40 to 0 °C (e.g. stratiform and cumuliform clouds) based on the in situ aircraft-based observations during the US National Science Foundation Southern Ocean Clouds, Radiation, Aerosol Transport Experimental Study (SOCRATES) flight campaign. The results show that the exchange between supercooled liquid water and ice crystals from a macrophysical perspective, represented by the increasing spatial ratio of regions containing ice crystals relative to the total in-cloud region (defined as ice spatial ratio), is positively correlated with the phase exchange from a microphysical perspective, represented by the increasing ice water content (IWC), decreasing liquid water content (LWC), increasing ice mass fraction, and increasing ice particle number fraction (IPNF). The mass exchange between liquid and ice becomes more significant during phase 3 when pure ice cloud regions (ICRs) start to appear. Occurrence frequencies of cloud thermodynamic phases show a significant phase change from liquid to ice at a similar temperature (i.e. −17.5 °C) among three types of definitions of mixed-phase clouds based on ice spatial ratio, ice mass fraction, or IPNF. Aerosol indirect effects are quantified for different phases using number concentrations of aerosols greater than 100 or 500 nm (N>100 and N>500, respectively). N>500 shows stronger positive correlations with ice spatial ratios compared with N>100. This result indicates that larger aerosols potentially contain ice-nucleating particles (INPs), which facilitate the formation of ice crystals in mixed-phase clouds. The impact of N>500 is also more significant in phase 2 when ice crystals just start to appear in the mixed phase compared with phase 3 when pure ICRs have formed, possibly due to the competing aerosol indirect effects on primary and secondary ice production in phase 3. The thermodynamic and dynamic conditions are quantified for each phase. The results show stronger in-cloud turbulence and higher updraughts in phases 2 and 3 when liquid and ice coexist compared with pure liquid or ice (phases 1 and 4, respectively). The highest updraughts and turbulence are seen in phase 3 when supercooled liquid droplets are surrounded by ice crystals. These results indicate both updraughts and turbulence support the maintenance of supercooled liquid water amongst ice crystals. Overall, these results illustrate the varying effects of aerosols, thermodynamics, and dynamics through various stages of mixed-phase cloud evolution based on this new method that categorizes cloud phases.more » « less
-
Abstract High‐latitudinal mixed‐phase clouds significantly affect Earth's radiative balance. Observations of cloud and radiative properties from two field campaigns in the Southern Ocean and Antarctica were compared with two global climate model simulations. A cyclone compositing method was used to quantify “dynamics‐cloud‐radiation” relationships relative to the extratropical cyclone centers. Observations show larger asymmetry in cloud and radiative properties between western and eastern sectors at McMurdo compared with Macquarie Island. Most observed quantities at McMurdo are higher in the western (i.e., post‐frontal) than the eastern (frontal) sector, including cloud fraction, liquid water path (LWP), net surface shortwave and longwave radiation (SW and LW), except for ice water path (IWP) being higher in the eastern sector. The two models were found to overestimate cloud fraction and LWP at Macquarie Island but underestimate them at McMurdo Station. IWP is consistently underestimated at both locations, both sectors, and in all seasons. Biases of cloud fraction, LWP, and IWP are negatively correlated with SW biases and positively correlated with LW biases. The persistent negative IWP biases may have become one of the leading causes of radiative biases over the high southern latitudes, after correcting the underestimation of supercooled liquid water in the older model versions. By examining multi‐scale factors from cloud microphysics to synoptic dynamics, this work will help increase the fidelity of climate simulations in this remote region.more » « less
-
null (Ed.)Abstract Weather and climate models are challenged by uncertainties and biases in simulating Southern Ocean (SO) radiative fluxes that trace to a poor understanding of cloud, aerosol, precipitation and radiative processes, and their interactions. Projects between 2016 and 2018 used in-situ probes, radar, lidar and other instruments to make comprehensive measurements of thermodynamics, surface radiation, cloud, precipitation, aerosol, cloud condensation nuclei (CCN) and ice nucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase cloudsnucleating particles over the SO cold waters, and in ubiquitous liquid and mixed-phase clouds common to this pristine environment. Data including soundings were collected from the NSF/NCAR G-V aircraft flying north-south gradients south of Tasmania, at Macquarie Island, and on the RV Investigator and RSV Aurora Australis. Synergistically these data characterize boundary layer and free troposphere environmental properties, and represent the most comprehensive data of this type available south of the oceanic polar front, in the cold sector of SO cyclones, and across seasons. Results show a largely pristine environments with numerous small and few large aerosols above cloud, suggesting new particle formation and limited long-range transport from continents, high variability in CCN and cloud droplet concentrations, and ubiquitous supercooled water in thin, multi-layered clouds, often with small-scale generating cells near cloud top. These observations demonstrate how cloud properties depend on aerosols while highlighting the importance of confirmed low clouds were responsible for radiation biases. The combination of models and observations is examining how aerosols and meteorology couple to control SO water and energy budgets.more » « less
An official website of the United States government

