skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Evaluating scanning electron microscopy for the measurement of small-scale topography
Abstract For predicting surface performance, multiscale topography analysis consistently outperforms standard roughness metrics; however, surface-characterization tools limit the range of sizes that can be measured. Therefore, we evaluate the use of scanning electron microscopy (SEM) to systematically measure small-scale topography. While others have employed SEM for similar purposes, the novelty of this investigation lies in the development and validation of a simple, flexible procedure that can be applied to a wide range of materials and geometries. First, we established four different options that can be used for sample preparation, and we measured quantitative topography of each using the SEM. Then the power spectral density (PSD) was used to compare topography among the four preparations, and against other techniques. A statistical comparison of PSDs demonstrated that SEM topography measurements outperformed AFM measurements at scales below 100 nm and were statistically indistinguishable from (highly labor-intensive) TEM measurements down to 16 nm. The limitations of SEM-based topography are quantified and discussed. Overall, the results show a simple generalizable method for revealing small-scale topography. When combined with traditional stylus profilometry, this technique characterizes surface topography across almost seven orders of magnitude, from 1 cm down to 16 nm, facilitating the use of physical models to predict performance.  more » « less
Award ID(s):
1844739
PAR ID:
10507946
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IOP
Date Published:
Journal Name:
Surface Topography: Metrology and Properties
ISSN:
2051-672X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The surface topography of diamond coatings strongly affects surface properties such as adhesion, friction, wear, and biocompatibility. However, the understanding of multi-scale topography, and its effect on properties, has been hindered by conventional measurement methods, which capture only a single length scale. Here, four different polycrystalline diamond coatings are characterized using transmission electron microscopy to assess the roughness down to the sub-nanometer scale. Then these measurements are combined, using the power spectral density (PSD), with conventional methods (stylus profilometry and atomic force microscopy) to characterize all scales of topography. The results demonstrate the critical importance of measuring topography across all length scales, especially because their PSDs cross over one another, such that a surface that is rougher at a larger scale may be smoother at a smaller scale and vice versa. Furthermore, these measurements reveal the connection between multi-scale topography and grain size, with characteristic scaling behavior at and slightly below the mean grain size, and self-affine fractal-like roughness at other length scales. At small (subgrain) scales, unpolished surfaces exhibit a common form of residual roughness that is self-affine in nature but difficult to detect with conventional methods. This approach of capturing topography from the atomic- to the macro-scale is termedcomprehensive topography characterization, and all of the topography data from these surfaces has been made available for further analysis by experimentalists and theoreticians. Scientifically, this investigation has identified four characteristic regions of topography scaling in polycrystalline diamond materials. 
    more » « less
  2. null (Ed.)
    Background: Surface topography strongly modifies adhesion of hard-material contacts, yet roughness of real surfaces typically exists over many length scales, and it is not clear which of these scales has the strongest effect. Objective: This investigation aims to determine which scales of topography have the strongest effect on macroscopic adhesion. Methods: Adhesion measurements were performed on technology-relevant diamond coatings of varying roughness using spherical ruby probes that are large enough (0.5-mm-diameter) to sample all length scales of topography. For each material, more than 2000 measurements of pull-off force were performed in order to investigate the magnitude and statistical distribution of adhesion. Using sphere-contact models, the roughness-dependent effective values of work of adhesion were measured, ranging from 0.08 to 7.15 mJ/m^2 across the four surfaces. The data was more accurately fit using numerical analysis, where an interaction potential was integrated over the AFM-measured topography of all contacting surfaces. Results: These calculations revealed that consideration of nanometer-scale plasticity in the materials was crucial for a good quantitative fit of the measurements, and the presence of such plasticity was confirmed with AFM measurements of the probe after testing. This analysis enabled the extraction of geometry-independent material parameters; the intrinsic work of adhesion between ruby and diamond was determined to be 46.3 mJ/m^2. The range of adhesion was 5.6 nm, which is longer than is typically assumed for atomic interactions, but is in agreement with other recent investigations. Finally, the numerical analysis was repeated for the same surfaces but this time with different length-scales of roughness included or filtered out. Conclusions: The results demonstrate a critical band of length-scales—between 43 nm and 1.8 µm in lateral size—that has the strongest effect on the total adhesive force for these hard, rough contacts. 
    more » « less
  3. Abstract The optimization of surface finish to improve performance, such as adhesion, friction, wear, fatigue life, or interfacial transport, occurs largely through trial and error, despite significant advancements in the relevant science. There are three central challenges that account for this disconnect: (1) the challenge of integration of many different types of measurement for the same surface to capture the multi-scale nature of roughness; (2) the technical complexity of implementing spectral analysis methods, and of applying mechanical or numerical models to describe surface performance; (3) a lack of consistency between researchers and industries in how surfaces are measured, quantified, and communicated. Here we present a freely-available internet-based application (available athttps://contact.engineering) which attempts to overcome all three challenges. First, the application enables the user to upload many different topography measurements taken from a single surface, including using different techniques, and then integrates all of them together to create a digital surface twin. Second, the application calculates many of the commonly used topography metrics, such as root-mean-square parameters, power spectral density (PSD), and autocorrelation function (ACF), as well as implementing analytical and numerical calculations, such as boundary element modeling (BEM) for elastic and plastic deformation. Third, the application serves as a repository for users to securely store surfaces, and if they choose, to share these with collaborators or even publish them (with a digital object identifier) for all to access. The primary goal of this application is to enable researchers and manufacturers to quickly and easily apply cutting-edge tools for the characterization and properties-modeling of real-world surfaces. An additional goal is to advance the use of open-science principles in surface engineering by providing a FAIR database where researchers can choose to publish surface measurements for all to use. 
    more » « less
  4. Abstract Many attachments to a scanning electron microscope (SEM), such as energy dispersive x‐ray spectroscopy, extend its function significantly. Typically, the application of such attachments requires that the specimen has a planar surface at a specific orientation. It is a challenge to make the plane of a microscale specimen satisfy the orientation requirement since they are visible only in an SEM. An in‐situ procedure is needed to adjust specimen orientation by using stage rotation and tilting functions, in the process of which the key is to determine the initial orientation. This study proposed and tested top‐down and side‐view approaches to determine the orientation of a planar surface inside an SEM. In the top‐down one, the projected area is monitored on SEM images as stage rotation and tilt angles are adjusted. When the surface normal is along the electron beam direction, the area has a maximum value. In the side‐view approach, the stage is adjusted so that the projection appears to be a straight horizontal line on the SEM image. Once the orientation of the specimen for top‐down or side‐view observation is determined, the original can be calculated, and a desired orientation can be realized by manipulating the stage. The procedures have been tested by analyzing planar surfaces of spherical particles in Al‐Cu‐Fe alloy in the form of facets. The measured angles between two surfaces are consistent with those expected from crystallographic consideration within 2.7° and 1.7° for the top‐down and side‐view approaches, respectively. Research HighlightsTop‐down and side‐view approaches have been proposed and tested for in‐situ determination of specimen planar surface orientation in a Scanning Electron Microscope.The measured angles between two surfaces are consistent with those expected from crystallographic consideration within 2.7° and 1.7° for the top‐down and side‐view approaches, respectively. 
    more » « less
  5. Abstract Understanding and modeling variability of ground motion is essential for building accurate and precise ground motion prediction equations, which can net site‐specific characterization and reduced hazard levels. Here, we explore the spatial variability in peak ground velocity (PGV) at Sage Brush Flats along the San Jacinto Fault in Southern California. We use data from a dense array (0.6 × 0.6 km2, 1,108 geophones, station spacings 10–30 m) deployed in 2014 for ~1 month. These data offer an opportunity to study small‐scale variability in this region. We examine 38 earthquakes (2 ≤ ML ≤ 4.2) within 200 km of the array. Fault strands and a small basin impact the ground motions, producing PGV variations up to 22% of the mean and a 40% reduction inPandSwave near‐surface velocities. We find along‐fault rupture directivity, source, and path effects can increase PGVs by 167%. Surface PGV measurements exceed the colocated borehole station (depth at 148 m) PGV by factors of 3–10, confirming the impact on PGV from near‐surface fault structures, basins, topography, and amplifications from soft sediments. Consistently, we find high PGVs within the basin structure. A pair of colocated GaML2.6 events produce repeatable PGV values with similar spatial patterns. The average corner frequencies of these two events are 11–16 Hz, and viable measurements of stress drop can differ by 6.45 MPa. Within this small array, the PGV values are variable implying spatial extrapolation of PGV to regions of known faults and basins, even across a small area, should be done with caution. 
    more » « less