skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Harnessing quantum emitter rings for efficient energy transport and trapping
Efficient transport and harvesting of excitation energy under low light conditions is an important process in nature and quantum technologies alike. Here we formulate a quantum optics perspective to excitation energy transport in configurations of two-level quantum emitters with a particular emphasis on efficiency and robustness against disorder. We study a periodic geometry of emitter rings with subwavelength spacing, where collective electronic states emerge due to near-field dipole–dipole interactions. The system gives rise to collective subradiant states that are particularly suited to excitation transport and are protected from energy disorder and radiative decoherence. Comparing ring geometries with other configurations shows that the former are more efficient in absorbing, transporting, and trapping incident light. Because our findings are agnostic as to the specific choice of quantum emitters, they indicate general design principles for quantum technologies with superior photon transport properties and may elucidate potential mechanisms resulting in the highly efficient energy transport efficiencies in natural light-harvesting systems.  more » « less
Award ID(s):
2016244 2317134
PAR ID:
10508183
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Optica Publishing
Date Published:
Journal Name:
Optica Quantum
Volume:
2
Issue:
2
ISSN:
2837-6714
Page Range / eLocation ID:
57
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. In recent years, photon routing has garnered considerable research activity due to its key applications in quantum networking and optical communications. This paper studies the single photon routing scheme in many-emitter disordered chiral waveguide quantum electrodynamics (wQED) ladders. The wQED ladder consists of two one-dimensional lossless waveguides simultaneously and chirally coupled with a chain of dipole-dipole interacting two-level quantum emitters (QEs). In particular, we analyze how a departure from the periodic placement of the QEs due to temperature-induced position disorder can impact the routing probability. This involves analyzing how the interplay between the collective atomic effects originating from the dipole-dipole interaction and disorder in the atomic location leading to single-photon localization can change the routing probabilities. As for some key results, we find that the routing probability exhibits a considerable improvement (more than value) for periodic and disordered wQED ladders when considering lattices consisting of twenty QEs. This robustness of collective effects against spontaneous emission loss and weak disorders is further confirmed by examining the routing efficiency and localization length for up to twenty QE chains. These results may find applications in quantum networking and distributed quantum computing under the realistic conditions of imperfect emitter trappings. 
    more » « less
  2. The transport and capture of photo-induced electronic excitations is of fundamental interest to the design of energy efficient quantum technologies and to the study of potential quantum effects in biology. Using a simple quantum optical model, we examine the influence of coherence, entanglement, and cooperative dissipation on the transport and capture of excitation energy. We demonstrate that the rate of energy extraction is optimized under conditions that minimize the quantum coherence and entanglement of the system, which is a consequence of spontaneous parity time-reversal symmetry breaking. We then examine the effects of vibrational disorder and show that dephasing can be used to enhance the transport of delocalized excitations in settings relevant to biological photosynthesis. Our results highlight the rich, emergent behavior associated with the quantum-to-classical transition with relevance to the design of room-temperature quantum devices. Published by the American Physical Society2024 
    more » « less
  3. Bose-Einstein condensation of excitons, with its potential for frictionless energy transport, has recently been observed in materials at low temperatures. Here, we show that partial exciton condensation plays a significant role in the 18-chromophore B850 ring of the light-harvesting complex 2 (LH2) in purple bacteria. Even in the single-excitation regime, we observe that excitonic entanglement across multiple sites exhibits signatures of exciton condensation in the particle-hole reduced density matrix—a partial exciton condensate. Crucially, we find that, by distributing the exciton across multiple sites of the ring, the exciton-condensate-like state sets favorable conditions for enhanced energy transfer, both before and after decoherence. Surprisingly, this discovery reveals that excitonic condensation, previously thought to require extreme conditions, can occur in a partial form in biological systems under ambient conditions, providing new insight into energy transport. These results additionally bring new insight into the long-standing debate on quantum versus classical mechanisms in photosynthetic light harvesting by showing that quantum coherence, in the form of a partial exciton condensate, indirectly initializes subsequent classical transfer. Our findings not only deepen our understanding of quantum coherence in light harvesting but also suggest design principles for materials capable of leveraging excitonic entanglement for efficient energy transport. Published by the American Physical Society2025 
    more » « less
  4. The interplay between coherence and system-environment interactions is at the basis of a wide range of phenomena, from quantum information processing to charge and energy transfer in molecular systems, biomolecules, and photochemical materials. In this work, we use a Frenkel exciton model with long-range interacting qubits coupled to a damped collective bosonic mode to investigate vibrationally assisted transfer processes in donor-acceptor systems featuring internal substructures analogous to light-harvesting complexes. We find that certain delocalized excitonic states maximize the transfer rate and that the entanglement is preserved during the dissipative transfer over a wide range of parameters. We investigate the reduction in transfer caused by static disorder, white noise, and finite temperature and study how transfer efficiency scales as a function of the number of dimerized monomers and the component number of each monomer, finding which excitonic states lead to optimal transfer. Finally, we provide a realistic experimental setting to realize this model in analog trapped-ion quantum simulators. Analog quantum simulation of systems comprising many and increasingly complex monomers could offer valuable insights into the design of light-harvesting materials, particularly in the nonperturbative intermediate parameter regime examined in this study, where classical simulation methods are resource intensive. 
    more » « less
  5. Confining light by plasmonic waveguides is promising for miniaturizing optical components, while topological photonics has been explored for robust light localization. Here we propose combining the two approaches into a simple periodically perforated plasmonic waveguide (PPW) design exhibiting robust localization of long-range surface plasmon polaritons. We predict the existence of a topological edge state originating from a quantized topological invariant, and numerically demonstrate the viability of its excitation at telecommunication wavelength using near-field and waveguide-based approaches. Strong modification of the radiative lifetime of dipole emitters by the edge state, and its robustness to disorder, are demonstrated. 
    more » « less