skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Analytical Model Coupling Ekman and Surface Layer Structure in Atmospheric Boundary Layer Flows
We introduce an analytical model that describes the vertical structure of Ekman boundary layer flows coupled to the Monin-Obukhov Similarity Theory (MOST) surface layer repre- sentation, which is valid for conventionally neutral (CNBL) and stable (SBL) atmospheric conditions. The model is based on a self-similar profile of horizontal stress for both CNBL and SBL flows that merges the classic 3/2 power law profile with a MOST-consistent stress profile in the surface layer. The velocity profiles are then obtained from the Ekman momentum balance equation. The same stress model is used to derive a new self-consistent Geostrophic Drag Law (GDL). We determine the ABL height (h) using an equilibrium boundary layer height model and parameterize the surface heat flux for quasi-steady SBL flows as a function of a prescribed surface temperature cooling rate. The ABL height and GDL equations can then be solved together to obtain the friction velocity (u∗) and the cross-isobaric angle (α0) as a function of known input parameters such as the Geostrophic wind speed and surface roughness (z0). We show that the model predictions agree well with simulation data from the literature and newly generated Large Eddy Simulations (LES). These results indicate that the proposed model provides an efficient and relatively accurate self-consistent approach for predicting the mean wind velocity distribution in CNBL and SBL flows.  more » « less
Award ID(s):
1949778 2034111
PAR ID:
10508221
Author(s) / Creator(s):
; ;
Publisher / Repository:
Springer
Date Published:
Journal Name:
Boundary-Layer Meteorology
Volume:
190
Issue:
4
ISSN:
0006-8314
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Reliable characterization of wind turbine wakes in the presence of Atmospheric Boundary Layer (ABL) flows is crucial to accurately predict wind farm performance. Wind veering in the ABL shears the wake in the lateral direction, and wind veer strength depends on the thermal stability of the ABL. Analytical wake modeling approaches must capture these ABL effects to ensure correct prediction of the wake structure under varied atmospheric conditions. To this end, a new physics-based analytical wake model is developed in this study that is capable of predicting the shape of wakes influenced by wind veer and thermal stratification effects. This model combines a novel ABL wind field model with the Gaussian wake model. The new ABL wind model is capable of predicting both the streamwise and spanwise velocity components in conventionally neutral (CNBL) and stable (SBL) ABL flows. The analytical expressions for both of these horizontal velocity components adhere to Monin-Obukhov Similarity Theory (MOST) in the surface layer, while capturing wind veering in the outer layer of the ABL. Incorporating this ABL model with the Gaussian wake model predicts laterally deflected wake shapes in a fully predictive and self-consistent fashion for a wide range of atmospheric conditions. The results also demonstrate that the enhanced wake model gives improved predictions relative to Large Eddy Simulations of power losses due to wake interactions under strongly stably stratified atmospheric conditions, where wind veer effects are dominant. 
    more » « less
  2. Analytical wake models provide a computationally efficient means to predict velocity distributions in wind turbine wakes in the atmospheric boundary layer (ABL). Most existing models are developed for neutral atmospheric conditions and correspondingly neglect the effects of buoyancy and Coriolis forces that lead to veer, i.e., changes in the wind direction with height. Both veer and changes in thermal stratification lead to lateral shearing of the wake behind a wind turbine, which affects the power output of downstream turbines. Here we develop an analytical engineering wake model for a wind turbine in yaw in ABL flows including Coriolis and thermal stratification effects. The model combines the new analytical representation of ABL vertical structure based on coupling Ekman and surface layer descriptions developed in Narasimhan et al. [Boundary Layer Meteorol. 190, 16 (2024)] with the vortex sheet-based wake model for yawed turbines proposed in Bastankhah et al. [J. Fluid Mech. 933, A2 (2022)], as well as a new method to predict the wake expansion rate based on the Townsend-Perry logarithmic scaling of streamwise velocity variance. The proposed wake model's predictions show good agreement with large-eddy simulation results, capturing the effects of wind veer and yawing, including the curled and sheared wake structures across various states of the ABL, ranging from neutrally to strongly stably stratified atmospheric conditions. The model significantly improves power loss predictions from wake interactions, especially in strongly stably stratified conditions where wind veer effects dominate. 
    more » « less
  3. Large-eddy simulations (LES) above forests and cities typically constrain the simulation domain to the first 10--20\% of the Atmospheric Boundary Layer (ABL), aiming to represent the finer details of the roughness elements and sublayer. These simulations are also commonly driven by a constant pressure gradient term in the streamwise direction and zero stress at the top, resulting in an unrealistic fast decay of the total stress profile. In this study, we investigate five LES setups, including pressure and/or top-shear driven flows with and without the Coriolis force, with the aim of identifying which option best represents turbulence profiles in the atmospheric surface layer (ASL). We show that flows driven solely by pressure not only result in a fast-decaying stress profile, but also in lower velocity variances and higher velocity skewnesses. Top-shear driven flows, on the other hand, better replicate ASL statistics. Overall, we recommend, and provide setup guidance for, simulation designs that include both a large scale pressure forcing and a non-zero stress and scalar flux at the top of the domain, and that also represent the Coriolis force. Such setups retain all the forces used in typical full ABL cases and result in the best match of the profiles of various statistical moments. 
    more » « less
  4. Baroclinicity adds another layer of complexity to the much-studied barotropic atmospheric boundary layers (ABLs) by modulating the pressure gradient in height. Despite the prevalence of baroclinicity in real-world ABLs, our knowledge of the interacting effects of baroclinicity and atmospheric stability is limited. In this talk, we aim to address this knowledge gap by systematically varying baroclinicity and stability using the large-eddy simulation (LES) technique. We will present how baroclinicity alters the friction velocity, Obukhov length, shear production, ABL height, and low-level jet (LLJ) in diabatic baroclinic atmospheric flows. It will be shown that while baroclinicity significantly impacts unstable, neutral, and weakly stable ABLs, its effects reduce with increased stratification in the ABL. In strongly stratified ABLs, the LLJ height, friction velocity, and Obukhov length converge to a constant asymptote independent of the baroclinicity regime. We will demonstrate that this behavior is attributed to the strong turbulence destruction in very stable ABLs that decouples the surface from higher elevations where baroclinicity is more important. Finally, two rescaling methods in the inner and outer layers of stable baroclinic ABLs will be presented to non-dimensionalize and collapse the wind profiles in baroclinic environments. The developed reduced model for different baroclinic wind profiles will be shown against the LES results. The findings of this research elucidate the underlying physics of baroclinic diabatic ABLs and are useful for characterizing the wind profiles in weather/climate models, field measurements, and various industrial applications. 
    more » « less
  5. As turbines continue to grow in hub height and rotor diameter and wind farms grow larger, consideration of stratified atmospheric boundary layer (ABL) processes in wind power models becomes increasingly important. Atmospheric stratification can considerably alter the boundary layer structure and flow characteristics through buoyant forcing. Variations in buoyancy, and corresponding ABL stability, in both space and time impact ABL wind speed shear, wind direction shear, boundary layer height, turbulence kinetic energy, and turbulence intensity. In addition, the presence of stratification will result in a direct buoyant forcing within the wake region. These ABL mechanisms affect turbine power production, the momentum and kinetic energy deficit wakes generated by turbines, and the turbulent mixing and kinetic energy entrainment in wind farms. Presently, state-of-practice engineering models of mean wake momentum utilize highly empirical turbulence models that do not explicitly account for ABL stability. Models also often neglect the interaction between the wake momentum deficit and the turbulence kinetic energy added by the wake, which depends on stratification. In this work, we develop a turbulence model that models the wake-added turbulence kinetic energy, and we couple it with a wake model based on the parabolized Reynolds-averaged Navier–Stokes equations. Comparing the model predictions to large eddy simulations across stabilities (Obukhov lengths) and surface roughness lengths, we find lower prediction error in both power production and the wake velocity field across the ABL conditions and error metrics investigated. 
    more » « less