skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: Cluster algebra structures on Poisson nilpotent algebras

Various coordinate rings of varieties appearing in the theory of Poisson Lie groups and Poisson homogeneous spaces belong to the large, axiomatically defined class of symmetric Poisson nilpotent algebras, e.g. coordinate rings of Schubert cells for symmetrizable Kac–Moody groups, affine charts of Bott-Samelson varieties, coordinate rings of double Bruhat cells (in the last case after a localization). We prove that every symmetric Poisson nilpotent algebra satisfying a mild condition on certain scalars is canonically isomorphic to a cluster algebra which coincides with the corresponding upper cluster algebra, without additional localizations by frozen variables. The constructed cluster structure is compatible with the Poisson structure in the sense of Gekhtman, Shapiro and Vainshtein. All Poisson nilpotent algebras are proved to be equivariant Poisson Unique Factorization Domains. Their seeds are constructed from sequences of Poisson-prime elements for chains of Poisson UFDs; mutation matrices are effectively determined from linear systems in terms of the underlying Poisson structure. Uniqueness, existence, mutation, and other properties are established for these sequences of Poisson-prime elements.

 
more » « less
Award ID(s):
2200762
PAR ID:
10508224
Author(s) / Creator(s):
;
Publisher / Repository:
Memoirs of the American Mathematical Society
Date Published:
Journal Name:
Memoirs of the American Mathematical Society
Volume:
290
Issue:
1445
ISSN:
0065-9266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the realization of acyclic cluster algebras as coordinate rings of Coxeter double Bruhat cells in Kac–Moody groups. We prove that all cluster monomials with $\mathbf{g}$ -vector lying in the doubled Cambrian fan are restrictions of principal generalized minors. As a corollary, cluster algebras of finite and affine type admit a complete and non-recursive description via (ind-)algebraic group representations, in a way similar in spirit to the Caldero–Chapoton description via quiver representations. In type $A_{1}^{(1)}$ , we further show that elements of several canonical bases (generic, triangular, and theta) which complete the partial basis of cluster monomials are composed entirely of restrictions of minors. The discrepancy among these bases is accounted for by continuous parameters appearing in the classification of irreducible level-zero representations of affine Lie groups. We discuss how our results illuminate certain parallels between the classification of representations of finite-dimensional algebras and of integrable weight representations of Kac–Moody algebras. 
    more » « less
  2. We study fixed-point loci of Nakajima varieties under symplectomorphisms and their antisymplectic cousins, which are compositions of a diagram isomorphism, a reflection functor, and a transpose defined by certain bilinear forms. These subvarieties provide a natural home for geometric representation theory of symmetric pairs. In particular, the cohomology of a Steinberg-type variety of the symplectic fixed-point subvarieties is conjecturally related to the universal enveloping algebra of the subalgebra in a symmetric pair. The latter symplectic subvarieties are further used to geometrically construct an action of a twisted Yangian on a torus equivariant cohomology of Nakajima varieties. In the type A case, these subvarieties provide a quiver model for partial Springer resolutions of nilpotent Slodowy slices of classical groups and associated symmetric spaces, which leads to a rectangular symmetry and a refinement of Kraft-Procesi row/column removal reductions. 
    more » « less
  3. We study modules over the commutative ring spectrum 𝐻𝔽₂∧𝐻𝔽₂, whose coefficient groups are quotients of the dual Steenrod algebra by collections of the Milnor generators. We show that very few of these quotients admit algebra structures, but those that do can be constructed simply: killing a generator ξ_{k} in the category of associative algebras freely kills the higher generators ξ_{k+n}. Using new information about the conjugation operation in the dual Steenrod algebra, we also consider quotients by families of Milnor generators and their conjugates. This allows us to produce a family of associative 𝐻𝔽₂∧𝐻𝔽₂-algebras whose coefficient rings are finite-dimensional and exhibit unexpected duality features. We then use these algebras to give detailed computations of the homotopy groups of several modules over this ring spectrum. 
    more » « less
  4. Abstract The two main approaches to the study of irreducible representations of orders (via traces and Poisson orders) have so far been applied in a completely independent fashion. We define and study a natural compatibility relation between the two approaches leading to the notion of Poisson trace orders. It is proved that all regular and reduced traces are always compatible with any Poisson order structure. The modified discriminant ideals of all Poisson trace orders are proved to be Poisson ideals and the zero loci of discriminant ideals are shown to be unions of symplectic cores, under natural assumptions (maximal orders and Cayley–Hamilton algebras). A base change theorem for Poisson trace orders is proved. A broad range of Poisson trace orders are constructed based on the proved theorems: quantized universal enveloping algebras, quantum Schubert cell algebras and quantum function algebras at roots of unity, symplectic reflection algebras, 3D and 4D Sklyanin algebras, Drinfeld doubles of pre-Nichols algebras of diagonal type, and root of unity quantum cluster algebras. 
    more » « less
  5. Finite $F$-representation type is an important notion in characteristic-$p$commutative algebra, but explicit examples of varieties with or without thisproperty are few. We prove that a large class of homogeneous coordinate ringsin positive characteristic will fail to have finite $F$-representation type. Todo so, we prove a connection between differential operators on the homogeneouscoordinate ring of $X$ and the existence of global sections of a twist of$(\mathrm{Sym}^m \Omega_X)^\vee$. By results of Takagi and Takahashi, thisallows us to rule out FFRT for coordinate rings of varieties with$(\mathrm{Sym}^m \Omega_X)^\vee$ not ``positive''. By using results positivityand semistability conditions for the (co)tangent sheaves, we show that severalclasses of varieties fail to have finite $F$-representation type, includingabelian varieties, most Calabi--Yau varieties, and complete intersections ofgeneral type. Our work also provides examples of the structure of the ring ofdifferential operators for non-$F$-pure varieties, which to this point havelargely been unexplored.

     
    more » « less