skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Winsorization for Robust Bayesian Neural Networks
With the advent of big data and the popularity of black-box deep learning methods, it is imperative to address the robustness of neural networks to noise and outliers. We propose the use of Winsorization to recover model performances when the data may have outliers and other aberrant observations. We provide a comparative analysis of several probabilistic artificial intelligence and machine learning techniques for supervised learning case studies. Broadly, Winsorization is a versatile technique for accounting for outliers in data. However, different probabilistic machine learning techniques have different levels of efficiency when used on outlier-prone data, with or without Winsorization. We notice that Gaussian processes are extremely vulnerable to outliers, while deep learning techniques in general are more robust.  more » « less
Award ID(s):
1939956 1939916
PAR ID:
10508459
Author(s) / Creator(s):
;
Publisher / Repository:
MDPI Publishers
Date Published:
Journal Name:
Entropy
Volume:
23
Issue:
11
ISSN:
1099-4300
Page Range / eLocation ID:
1546
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Previous literature shows that deep learning is an effective tool to decode the motor intent from neural signals obtained from different parts of the nervous system. However, deep neural networks are often computationally complex and not feasible to work in real-time. Here we investigate different approaches' advantages and disadvantages to enhance the deep learning-based motor decoding paradigm's efficiency and inform its future implementation in real-time. Our data are recorded from the amputee's residual peripheral nerves. While the primary analysis is offline, the nerve data is cut using a sliding window to create a “pseudo-online” dataset that resembles the conditions in a real-time paradigm. First, a comprehensive collection of feature extraction techniques is applied to reduce the input data dimensionality, which later helps substantially lower the motor decoder's complexity, making it feasible for translation to a real-time paradigm. Next, we investigate two different strategies for deploying deep learning models: a one-step (1S) approach when big input data are available and a two-step (2S) when input data are limited. This research predicts five individual finger movements and four combinations of the fingers. The 1S approach using a recurrent neural network (RNN) to concurrently predict all fingers' trajectories generally gives better prediction results than all the machine learning algorithms that do the same task. This result reaffirms that deep learning is more advantageous than classic machine learning methods for handling a large dataset. However, when training on a smaller input data set in the 2S approach, which includes a classification stage to identify active fingers before predicting their trajectories, machine learning techniques offer a simpler implementation while ensuring comparably good decoding outcomes to the deep learning ones. In the classification step, either machine learning or deep learning models achieve the accuracy and F1 score of 0.99. Thanks to the classification step, in the regression step, both types of models result in a comparable mean squared error (MSE) and variance accounted for (VAF) scores as those of the 1S approach. Our study outlines the trade-offs to inform the future implementation of real-time, low-latency, and high accuracy deep learning-based motor decoder for clinical applications. 
    more » « less
  2. Abstract Timely and accurate prediction of solar flares is a crucial task due to the danger they pose to human life and infrastructure beyond Earth’s atmosphere. Although various machine learning algorithms have been employed to improve solar flare prediction, there has been limited focus on improving performance using outlier detection. In this study, we propose the use of a tree-based outlier detection algorithm, Isolation Forest (iForest), to identify multivariate time-series instances within the flare-forecasting benchmark data set, Space Weather Analytics for Solar Flares (SWAN-SF). By removing anomalous samples from the nonflaring class (N-class) data, we observe a significant improvement in both the true skill score and the updated Heidke skill score in two separate experiments. We focus on analyzing outliers detected by iForest at a 2.4% contamination rate, considered the most effective overall. Our analysis reveals a co-occurrence between the outliers we discovered and strong flares. Additionally, we investigated the similarity between the outliers and the strong-flare data and quantified it using Kullback–Leibler divergence. This analysis demonstrates a higher similarity between our outliers and strong-flare data when compared to the similarity between the outliers and the rest of the N-class data, supporting our rationale for using outlier detection to enhance SWAN-SF data for flare prediction. Furthermore, we explore a novel approach by treating our outliers as if they belong to flaring-class data in the training phase of our machine learning, resulting in further enhancements to our models’ performance. 
    more » « less
  3. Discovering and clustering subspaces in high-dimensional data is a fundamental problem of machine learning with a wide range of applications in data mining, computer vision, and pattern recognition. Earlier methods divided the problem into two separate stages of finding the similarity matrix and finding clusters. Similar to some recent works, we integrate these two steps using a joint optimization approach. We make the following contributions: (i) we estimate the reliability of the cluster assignment for each point before assigning a point to a subspace. We group the data points into two groups of “certain” and “uncertain”, with the assignment of latter group delayed until their subspace association certainty improves. (ii) We demonstrate that delayed association is better suited for clustering subspaces that have ambiguities, i.e. when subspaces intersect or data are contaminated with outliers/noise. (iii) We demonstrate experimentally that such delayed probabilistic association leads to a more accurate self-representation and final clusters. The proposed method has higher accuracy both for points that exclusively lie in one subspace, and those that are on the intersection of subspaces. (iv) We show that delayed association leads to huge reduction of computational cost, since it allows for incremental spectral clustering 
    more » « less
  4. Over the past two decades, machine learning and deep learning techniques for forecasting solar flares have generated great impact due to their ability to learn from a high dimensional data space. However, lack of high quality data from flaring phenomena becomes a constraining factor for such tasks. One of the methods to tackle this complex problem is utilizing trained classifiers with multivariate time series of magnetic field parameters. In this work, we compare the exceedingly popular multivariate time series classifiers applying deep learning techniques with commonly used machine learning classifiers (i.e., SVM). We intend to explore the role of data augmentation on time series oriented flare prediction techniques, specifically the deep learning-based ones. We utilize four time series data augmentation techniques and couple them with selected multivariate time series classifiers to understand how each of them affects the outcome. In the end, we show that the deep learning algorithms as well as augmentation techniques improve our classifiers performance. The resulting classifiers’ performance after augmentation outplayed the traditional flare forecasting techniques. 
    more » « less
  5. Abstract In recent years, advances in image processing and machine learning have fueled a paradigm shift in detecting genomic regions under natural selection. Early machine learning techniques employed population-genetic summary statistics as features, which focus on specific genomic patterns expected by adaptive and neutral processes. Though such engineered features are important when training data are limited, the ease at which simulated data can now be generated has led to the recent development of approaches that take in image representations of haplotype alignments and automatically extract important features using convolutional neural networks. Digital image processing methods termed α-molecules are a class of techniques for multiscale representation of objects that can extract a diverse set of features from images. One such α-molecule method, termed wavelet decomposition, lends greater control over high-frequency components of images. Another α-molecule method, termed curvelet decomposition, is an extension of the wavelet concept that considers events occurring along curves within images. We show that application of these α-molecule techniques to extract features from image representations of haplotype alignments yield high true positive rate and accuracy to detect hard and soft selective sweep signatures from genomic data with both linear and nonlinear machine learning classifiers. Moreover, we find that such models are easy to visualize and interpret, with performance rivaling those of contemporary deep learning approaches for detecting sweeps. 
    more » « less