Abstract Functionally gradient materials emulate nature's ability to seamlessly blend properties through variations in material composition, unlocking advanced engineering applications such as biomedical devices and high‐performance composites. Additive manufacturing, particularly stereolithography, enables sophisticated 3D geometries with diverse materials. However, current stereolithography‐based multi‐material 3D printing is constrained by time‐intensive material switching and compromised interfacial properties. To overcome these challenges, we present dynamic fluid‐assisted micro continuous liquid interface production (DF‐µCLIP), a high‐speed multi‐material 3D printing platform that integrates varying compositions in a fully continuous fashion. By utilizing the polymerization‐free “dead zone”, vliquid resins are seamlessly replenished within a resin bath equipped with dynamic fluidic channels and a synchronized material supply system. DF‐µCLIP achieves ultra‐fast printing speeds of 90 mm/hour with 7.4 µ m pixel‐1 resolution while enabling on‐the‐fly material transitions. This strategy enhances mechanical strength at multi‐material interface through entangled polymer networks and promotes seamless material transitions between distinct materials ilike fragile hydrogels and rigid polymers, addressing interfacial failure caused by mismatch of swelling behavior. Additionally, dynamic material replenishment with real‐time composition control enables continuous gradient printing instead of the conventional step‐wise controlled gradient. Demonstrations include polymers with gradient color transitions and gradient carbon nanotube (CNT) composites with seamlessly varying conductivity.
more »
« less
Tailoring Writability and Performance of Star Block Copolypeptides Hydrogels through Side‐Chain Design
Abstract Shear‐recoverable hydrogels based on block copolypeptides with rapid self‐recovery hold potential in extrudable and injectable 3D‐printing applications. In this work, a series of 3‐arm star‐shaped block copolypeptides composed of an inner hydrophilic poly(l‐glutamate) domain and an outer β‐sheet forming domain is synthesized with varying side chains and block lengths. By changing the β‐sheet forming domains, hydrogels with diverse microstructures and mechanical properties are prepared and structure–function relationships are determined using scattering and rheological techniques. Differences in the properties of these materials are amplified during direct‐ink writing with a strong correlation observed between printability and material chemistry. Significantly, it is observed that non‐canonical β‐sheet blocks based on phenyl glycine form more stable networks with superior mechanical properties and writability compared to widely used natural amino acid counterparts. The versatile design available through block copolypeptide materials provides a robust platform to access tunable material properties based solely on molecular design. These systems can be exploited in extrusion‐based applications such as 3D‐printing without the need for additives.
more »
« less
- Award ID(s):
- 1933487
- PAR ID:
- 10508540
- Publisher / Repository:
- Wiley-VCH GmbH
- Date Published:
- Journal Name:
- Small
- Volume:
- 19
- Issue:
- 50
- ISSN:
- 1613-6810
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Natural organisms have evolved a series of versatile functional biomaterials and structures to cope with survival crises in their living environment, exhibiting outstanding properties such as superhydrophobicity, anisotropy, and mechanical reinforcement, which have provided abundant inspiration for the design and fabrication of next‐generation multi‐functional devices. However, the lack of available materials and limitations of traditional manufacturing methods for complex multiscale structures have hindered the progress in bio‐inspired manufacturing of functional structures. As a revolutionary emerging manufacturing technology, additive manufacturing (i.e., 3D printing) offers high design flexibility and manufacturing freedom, providing the potential for the fabrication of intricate, multiscale, hierarchical, and multi‐material structures. Herein, a comprehensive review of current 3D printing of surface/interface structures, covering the applied materials, designs, and functional applications is provided. Several bio‐inspired surface structures that have been created using 3D printing technology are highlighted and categorized based on their specific properties and applications, some properties can be applied to multiple applications. The optimized designs of these 3D‐printed bio‐inspired surfaces offer a promising prospect of low‐cost, high efficiency, and excellent performance. Finally, challenges and opportunities in field of fabricating functional surface/interface with more versatile functional material, refined structural design, and better cost‐effective are discussed.more » « less
-
Abstract Hydrogels are often synthesized through photoinitiated step‐, chain‐, and mixed‐mode polymerizations, generating diverse network topologies and resultant material properties that depend on the underlying network connectivity. While many photocrosslinking reactions are available, few afford controllable connectivity of the hydrogel network. Herein, a versatile photochemical strategy is introduced for tuning the structure of poly(ethylene glycol) (PEG) hydrogels using macromolecular monomers functionalized with maleimide and styrene moieties. Hydrogels are prepared along a gradient of topologies by varying the ratio of step‐growth (maleimide dimerization) to chain‐growth (maleimide‐styrene alternating copolymerization) network‐forming reactions. The initial PEG content and final network physical properties (e.g., modulus, swelling, diffusivity) are tailored in an independent manner, highlighting configurable gel mechanics and reactivity. These photochemical reactions allow high‐fidelity photopatterning and 3D printing and are compatible with 2D and 3D cell culture. Ultimately, this photopolymer chemistry allows facile control over network connectivity to achieve adjustable material properties for broad applications.more » « less
-
null (Ed.)Purpose This paper aims to summarize the up-to-date research performed on combinations of various biofibers and resin systems used in different three-dimensional (3D) printing technologies, including powder-based, material extrusion, solid-sheet and liquid-based systems. Detailed information about each process, including materials used and process design, are described, with the resultant products’ mechanical properties compared with those of 3D-printed parts produced from pure resin or different material combinations. In most processes introduced in this paper, biofibers are beneficial in improving the mechanical properties of 3D-printed parts and the biodegradability of the parts made using these green materials is also greatly improved. However, research on 3D printing of biofiber-reinforced composites is still far from complete, and there are still many further studies and research areas that could be explored in the future. Design/methodology/approach The paper starts with an overview of the current scenario of the composite manufacturing industry and then the problems of advanced composite materials are pointed out, followed by an introduction of biocomposites. The main body of the paper covers literature reviews of recently emerged 3D printing technologies that were applied to biofiber-reinforced composite materials. This part is classified into subsections based on the form of the starting materials used in the 3D printing process. A comprehensive conclusion is drawn at the end of the paper summarizing the findings by the authors. Findings Most of the biofiber-reinforced 3D-printed products exhibited improved mechanical properties than products printed using pure resin, indicating that biofibers are good replacements for synthetic ones. However, synthetic fibers are far from being completely replaced by biofibers due to several of their disadvantages including higher moisture absorbance, lower thermal stability and mechanical properties. Many studies are being performed to solve these problems, yet there are still some 3D printing technologies in which research concerning biofiber-reinforced composite parts is quite limited. This paper unveils potential research directions that would further develop 3D printing in a sustainable manner. Originality/value This paper is a summary of attempts to use biofibers as reinforcements together with different resin systems as the starting material for 3D printing processes, and most of the currently available 3D printing techniques are included herein. All of these attempts are solutions to some principal problems with current 3D printing processes such as the limit in the variety of materials and the poor mechanical performance of 3D printed parts. Various types of biofibers are involved in these studies. This paper unveils potential research directions that would further widen the use of biofibers in 3D printing in a sustainable manner.more » « less
-
Abstract Thermoplastic elastomers (TPEs) are nanostructured, melt‐processable, elastomeric block copolymers. When TPEs that form cylindrical or lamellar nanostructures are macroscopically oriented, their material properties can exhibit several orders of magnitude of anisotropy. Here it is demonstrated that the flows applied during the 3D printing of a cylinder‐forming TPE enable hierarchical control over material nanostructure and function. It is demonstrated that 3D printing allows for control over the extent of nanostructural and mechanical anisotropy and that thermal annealing of 3D printed structures leads to highly anisotropic properties (up to 85 × anisotropic tensile modulus). This approach is leveraged to print functional soft 3D architectures with tunable local and macroscopic mechanical responses. Further, these printed TPEs intrinsically achieve melt‐reprocessability over multiple cycles, reprogrammability, and robust self‐healing via a brief period of thermal annealing, enabling facile fabrication of highly tunable, robust, and recyclable soft architectures.more » « less
An official website of the United States government

