Abstract Dual active galactic nuclei (AGNs), which are the manifestation of two actively accreting supermassive black holes (SMBHs) hosted by a pair of merging galaxies, are a unique laboratory for studying the physics of SMBH feeding and feedback during an indispensable stage of galaxy evolution. In this work, we present NOEMA CO(2–1) observations of seven kiloparsec-scale dual-AGN candidates drawn from a recent Chandra survey of low redshift, optically classified AGN pairs. These systems are selected because they show unexpectedly low 2–10 keV X-ray luminosities for their small physical separations signifying an intermediate-to-late stage of merger. Circumnuclear molecular gas traced by the CO(2–1) emission is significantly detected in six of the seven pairs and 10 of the 14 nuclei, with an estimated mass ranging between (0.2–21) × 109M⊙. The primary nuclei, i.e., the ones with the higher stellar velocity dispersion, tend to have a higher molecular gas mass than the secondary. Most CO-detected nuclei show a compact morphology, with a velocity field consistent with a kiloparsec-scale rotating structure. The inferred hydrogen column densities range between 5 × 1021–2 × 1023cm−2, but mostly at a few times 1022cm−2, in broad agreement with those derived from X-ray spectral analysis. Together with the relatively weak mid-infrared emission, the moderate column density argues against the prevalence of heavily obscured, intrinsically luminous AGNs in these seven systems, but favors a feedback scenario in which AGN activity triggered by a recent pericentric passage of the galaxy pair can expel circumnuclear gas and suppress further SMBH accretion.
more »
« less
Black hole feeding and feedback in a compact galaxy
ABSTRACT We perform high-resolution hydrodynamical simulations using the framework of MACER to investigate supermassive black hole (SMBH) feeding and feedback in a massive compact galaxy, which has a small effective radius but a large stellar mass, with a simulation duration of 10 Gyr. We compare the results with a reference galaxy with a similar stellar mass but a less concentrated stellar density distribution, as typically found in local elliptical galaxies. We find that about 10 per cent of the time, the compact galaxy develops multiphase gas within a few kpc, but the accretion flow through the inner boundary below the Bondi radius is always a single phase. The inflow rate in the compact galaxy is several times larger than in the reference galaxy, mainly due to the higher gas density caused by the more compact stellar distribution. Such a higher inflow rate results in stronger SMBH feeding and feedback and a larger fountain-like inflow-outflow structure. Compared to the reference galaxy, the star formation rate in the compact galaxy is roughly two orders of magnitude higher but is still low enough to be considered quiescent. Over the whole evolution period, the black hole mass grows by ∼50 per cent in the compact galaxy, much larger than the value of ∼ 3 per cent in the reference galaxy.
more »
« less
- Award ID(s):
- 2107735
- PAR ID:
- 10508579
- Publisher / Repository:
- Oxford University Press
- Date Published:
- Journal Name:
- Monthly Notices of the Royal Astronomical Society
- Volume:
- 523
- Issue:
- 2
- ISSN:
- 0035-8711
- Format(s):
- Medium: X Size: p. 1641-1647
- Size(s):
- p. 1641-1647
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
ABSTRACT We present Trinity, a flexible empirical model that self-consistently infers the statistical connection between dark matter haloes, galaxies, and supermassive black holes (SMBHs). Trinity is constrained by galaxy observables from 0 < z < 10 [galaxies’ stellar mass functions, specific and cosmic star formation rates (SFRs), quenched fractions, and UV luminosity functions] and SMBH observables from 0 < z < 6.5 (quasar luminosity functions, quasar probability distribution functions, active black hole mass functions, local SMBH mass–bulge mass relations, and the observed SMBH mass distributions of high-redshift bright quasars). The model includes full treatment of observational systematics [e.g. active galactic nucleus (AGN) obscuration and errors in stellar masses]. From these data, Trinity infers the average SMBH mass, SMBH accretion rate, merger rate, and Eddington ratio distribution as functions of halo mass, galaxy stellar mass, and redshift. Key findings include: (1) the normalization and the slope of the SMBH mass–bulge mass relation increases mildly from z = 0 to z = 10; (2) The best-fitting AGN radiative+kinetic efficiency is ∼0.05–0.06, but can be in the range ∼0.035–0.07 with alternative input assumptions; (3) AGNs show downsizing, i.e. the Eddington ratios of more massive SMBHs start to decrease earlier than those of lower mass objects; (4) The average ratio between average SMBH accretion rate and SFR is ∼10−3 for low-mass galaxies, which are primarily star-forming. This ratio increases to ∼10−1 for the most massive haloes below z ∼ 1, where star formation is quenched but SMBHs continue to accrete.more » « less
-
ABSTRACT We characterize the population of wandering black holes, defined as those physically offset from their halo centres, in the romulus cosmological simulations. Unlike most other currently available cosmological simulations, black holes are seeded based on local gas properties and are permitted to evolve dynamically without being fixed at halo centres. Tracking these black holes allows us to make robust predictions about the offset population. We find that the number of wandering black holes scales roughly linearly with the halo mass, such that we expect thousands of wandering black holes in galaxy cluster haloes. Locally, these wanderers account for around 10 per cent of the local black hole mass budget once seed masses are accounted for. Yet for higher redshifts ($$z$$ ≳ 4), wandering black holes both outweigh and outshine their central supermassive counterparts. Most wandering black holes, we find, remain close to the seed mass and originate from the centres of previously disrupted satellite galaxies. While most do not retain a resolved stellar counterpart, those that do are situated farther out at larger fractions of the virial radius. Wanderers with higher luminosities are preferentially at lower radius, more massive, and either closer to their host’s mid-planes or associated with a stellar overdensity. This analysis shows that our current census of supermassive black holes is incomplete and that a substantial population of off-centre wanderers likely exists.more » « less
-
Abstract Tight relationships exist in the local Universe between the central stellar properties of galaxies and the mass of their supermassive black hole (SMBH)1–3. These suggest that galaxies and black holes co-evolve, with the main regulation mechanism being energetic feedback from accretion onto the black hole during its quasar phase4–6. A crucial question is how the relationship between black holes and galaxies evolves with time; a key epoch to examine this relationship is at the peaks of star formation and black hole growth 8–12 billion years ago (redshifts 1–3)7. Here we report a dynamical measurement of the mass of the black hole in a luminous quasar at a redshift of 2, with a look back in time of 11 billion years, by spatially resolving the broad-line region (BLR). We detect a 40-μas (0.31-pc) spatial offset between the red and blue photocentres of the Hα line that traces the velocity gradient of a rotating BLR. The flux and differential phase spectra are well reproduced by a thick, moderately inclined disk of gas clouds within the sphere of influence of a central black hole with a mass of 3.2 × 108 solar masses. Molecular gas data reveal a dynamical mass for the host galaxy of 6 × 1011 solar masses, which indicates an undermassive black hole accreting at a super-Eddington rate. This suggests a host galaxy that grew faster than the SMBH, indicating a delay between galaxy and black hole formation for some systems.more » « less
-
Abstract Tidal disruption events (TDEs) are a class of transients that occur when a star is destroyed by the tides of a massive black hole (MBH). Their rates encode valuable MBH demographic information, but this can only be extracted if accurate TDE rate predictions are available for comparisons with observed rates. In this work, we present a new, observer-friendly Python package called REPTiDE, which implements a standard loss-cone model for computing TDE rates given a stellar density distribution and an MBH mass. We apply this software to a representative sample of 91 nearby galaxies over a wide range of stellar masses with high-resolution nuclear density measurements from C. H. Hannah et al. We measure per-galaxy TDE rates ranging between 10−7.7and 10−2.9yr–1and find that the sample-averaged rates agree well with observations. We find a turnover in the TDE rate as a function of both galaxy stellar mass and black hole mass, with the peak rates being observed in galaxies at a galaxy mass of 109.5M⊙and a black hole mass of 106.5M⊙. Despite the lower TDE rates inferred for intermediate-mass black holes, we find that they have gained a higher fraction of their mass through TDEs when compared to higher-mass black holes. This growth of lower-mass black holes through TDEs can enable us to place interesting constraints on their spins; we find maximum spins ofa• ≈ 0.9 for black holes with masses below ∼105.5M⊙.more » « less
An official website of the United States government
