The hierarchical structure and dynamics of polymer solutions control the transport of nanoparticles (NPs) through them. Here, we perform multi-particle collision dynamics simulations of solutions of semiflexible polymer chains with tunable persistence length l p to investigate the effect of chain stiffness on NP transport. The NPs exhibit two distinct dynamical regimes – subdiffusion on short time scales and diffusion on long time scales. The long-time NP diffusivities are compared with predictions from the Stokes–Einstein relation (SER), mode-coupling theory (MCT), and a recent polymer coupling theory (PCT). Increasing deviations from the SER as the polymer chains become more rigid ( i.e. as l p increases) indicate that the NP motions become decoupled from the bulk viscosity of the polymer solution. Likewise, polymer stiffness leads to deviations from PCT, which was developed for fully flexible chains. Independent of l p , however, the long-time diffusion behavior is well-described by MCT, particularly at high polymer concentration. We also observed that the short-time subdiffusive dynamics are strongly dependent on polymer flexibility. As l p is increased, the NP dynamics become more subdiffusive and decouple from the dynamics of the polymer chain center-of-mass. We posit that these effects are due to differences in the segmental mobility of the semiflexible chains.
more »
« less
Anisotropic material depletion in epitaxial polymer crystallization
Matrix-assisted pulsed laser evaporation enables precise control of polymer film deposition, facilitating the creation of well-oriented epitaxial polymer films and offering insights into confined crystallization.
more »
« less
- Award ID(s):
- 2011750
- PAR ID:
- 10508949
- Publisher / Repository:
- Soft Matter
- Date Published:
- Journal Name:
- Soft Matter
- Volume:
- 19
- Issue:
- 40
- ISSN:
- 1744-683X
- Page Range / eLocation ID:
- 7691 to 7695
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Polymer single crystals are used as templates to synthesize polymer brushes, known as the “polymer‐single‐crystal‐assisted‐grafting‐to” (PSCAGT) approach. Polymer brushes with controlled grafting densities and spatial tethering locations are demonstrated. Previous works focused on solution crystallization, which involves large amounts of organic solvent, and the grafting density can only be tuned by varying crystallization temperatures. In this work, thin film crystallization is utilized to fabricate 2D polymer crystals on flat surfaces. Subsequent chemical tethering leads to polymer brushes that retain the original morphology of the crystals with high fidelity. Furthermore, it is shown that the grafting density of the polymer brushes fabricated using this method depends on the chain end distribution on the top/bottom surfaces of the crystal, which can be facilely controlled by annealing the crystals at various nonsolvent media. This work broadens the scope of the PSCAGT method and provides a new route to achieve polymer brushes with controlled structures.more » « less
-
Abstract Chiral packing of ligands on the surface of nanoparticles (NPs) is of fundamental and practical importance, as it determines how NPs interact with each other and with the molecular world. Herein, for gold nanorods (NRs) capped with end‐grafted nonchiral polymer ligands, we show a new mechanism of chiral surface patterning. Under poor solvency conditions, a smooth polymer layer segregates into helicoidally organized surface‐pinned micelles (patches). The helicoidal morphology is dictated by the polymer grafting density and the ratio of the polymer ligand length to nanorod radius. Outside this specific parameter space, a range of polymer surface structures was observed, including random, shish‐kebab, and hybrid patches, as well as a smooth polymer layer. We characterize polymer surface morphology by theoretical and experimental state diagrams. The helicoidally organized polymer patches on the NR surface can be used as a template for the helicoidal organization of other NPs, masked synthesis on the NR surface, as well as the exploration of new NP self‐assembly modes.more » « less
-
Abstract This review summarizes recent progress in investigating polymer systems by using Differential dynamic microscopy (DDM), a rapidly emerging approach that transforms a commercial microscope by combining real‐space information with the powerful capabilities of conventional light scattering analysis. DDM analysis of a single microscope movie gives access to the sample dynamics in a wide range of scattering wave‐vectors, enabling contemporary polymer science experiments that would be difficult or impossible with standard light scattering techniques. Examples of application include the characterization of polymer solutions and networks, of polymer based colloidal systems, of biopolymers, and of cellular motility in polymeric fluids. Further applications of DDM to a variety of polymer systems are suggested to be just behind the corner and it is thus likely that DDM will become a tool of choice of the modern experimental polymer scientists.more » « less
An official website of the United States government

