skip to main content


Title: Sifting Through Clutter and Finding Answers that Utter Among COVID-19 Data for Medical Users via Gateways
Science gateways have been a crucial tool that lowers the barriers of computer language proficiency for researchers and scientists alike to implement digital tools to further their research agendas. However, gateways remain somewhat esoteric and difficult to use for many potential users. A chatbot has been proposed as a solution to aid gateway users and for the improvement of gateway usability. Via in-depth interviews with 10 medical professionals, we investigated the challenges they faced when extracting data, namely, slow speed, limited scope, and mixed quality of data. We suggest future gateway developments to address the issues that medical professionals face when searching for publications and data. Findings suggest that gateways could serve practitioners (i.e., clinicians, healthcare providers in this case), beyond the original vision for research and education. Moreover, gateway projects could consider conducting similar market research interviews to better understand the work context (including challenges) faced by the intended users of specific gateways.  more » « less
Award ID(s):
2006816
NSF-PAR ID:
10509329
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Zenodo
Date Published:
Subject(s) / Keyword(s):
Science Gateways Chatbot In-Depth Interview
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Building science gateways for humanities content poses new challenges to the science gateway community. Compared with science gateways devoted to scientific content, humanities-related projects usually require 1) processing data in various formats, such as text, image, video, etc., 2) constant public access from a broad audience, and therefore 3) reliable security, ideally with low maintenance. Many traditional science gateways are monolithic in design, which makes them easier to write, but they can be computationally inefficient when integrated with numerous scientific packages for data capture and pipeline processing. Since these packages tend to be single-threaded or nonmodular, they can create traffic bottlenecks when processing large numbers of requests. Moreover, these science gateways are usually challenging to resume development on due to long gaps between funding periods and the aging of the integrated scientific packages. In this paper, we study the problem of building science gateways for humanities projects by developing a service-based architecture, and present two such science gateways: the Moving Image Research Collections (MIRC) – a science gateway focusing on image analysis for digital surrogates of historical motion picture film, and SnowVision - a science gateway for studying pottery fragments in southeastern North America. For each science gateway, we present an overview of the background of the projects, and some unique challenges in their design and implementation. These two science gateways are deployed on XSEDE’s Jetstream academic clouding computing resource and are accessed through web interfaces. Apache Airavata middleware is used to manage the interactions between the web interface and the deep-learning-based (DL) backend service running on the Bridges graphics processing unit (GPU) cluster. 
    more » « less
  2. Science gateways have gained a lot of traction in the last twenty years, as evidenced by projects such as the Science Gateways Community Institute (SGCI) and the Center of Excellence on Science Gateways (SGX3) in the US, The Australian Research Data Commons (ARDC) and its platforms in Australia, and the projects around Virtual Research Environments in Europe. A few mature frameworks have evolved with their different strengths and foci and have been taken up by a larger community such as Hubzero, Tapis, and Galaxy. However, even when gateways are built on successful frameworks, they continue to face the challenges of ongoing maintenance costs and how to meet the ever-expanding needs of the community they serve with enhanced features. It is not uncommon that gateways with compelling use cases are nonetheless unable to get past the prototype phase and become a full production service, or if they do, they don't survive more than a couple of years. While there is no guaranteed pathway to success, it seems likely that for any gateway there is a need for a strong community and/or solid funding streams to create and sustain its success. With over twenty years of examples to draw from, we present in this paper ten factors common to successful and enduring gateways that effectively serve as best practices for any new or developing gateway. 
    more » « less
  3. Over the last two decades, science gateways have become essential tools for supporting both research and education. The SimVascular application is an open source software package providing a complete pipeline from medical image data segmentation to patient-specific blood flow simulation and analysis. With an ever-increasing user base of students, educators, clinicians, and researchers, the development group wanted a user-friendly web portal for users to run SimVascular flow simulations and to be able to support a large number of users with minimum effort and also hide complexity of using HPCs. This paper discusses how the SimVascular Science Gateway became a tool for students, educators, and researchers of all levels and continues to gather and grow a strong research community. 
    more » « less
  4. Summary

    Scholars worldwide leverage science gateways/virtual research environments (VREs) for a wide variety of research and education endeavors spanning diverse scientific fields. Evaluating the value of a given science gateway/VRE to its constituent community is critical in obtaining the financial and human resources necessary to sustain operations and increase adoption in the user community. In this article, we feature a variety of exemplar science gateways/VREs and detail how they define impact in terms of, for example, their purpose, operation principles, and size of user base. Further, the exemplars recognize that their science gateways/VREs will continuously evolve with technological advancements and standards in cloud computing platforms, web service architectures, data management tools and cybersecurity. Correspondingly, we present a number of technology advances that could be incorporated in next‐generation science gateways/VREs to enhance their scope and scale of their operations for greater success/impact. The exemplars are selected from owners of science gateways in the Science Gateways Community Institute (SGCI) clientele in the United States, and from the owners of VREs in the International Virtual Research Environment Interest Group (VRE‐IG) of the Research Data Alliance. Thus, community‐driven best practices and technology advances are compiled from diverse expert groups with an international perspective to envisage futuristic science gateway/VRE innovations.

     
    more » « less
  5. Scientists in disciplines such as neuroscience and bioinformatics are increasingly relying on science gateways for experimentation on voluminous data, as well as analysis and visualization in multiple perspectives. Though current science gateways provide easy access to computing resources, datasets and tools specific to the disciplines, scientists often use slow and tedious manual efforts to perform knowledge discovery to accomplish their research/education tasks. Recommender systems can provide expert guidance and can help them to navigate and discover relevant publications, tools, data sets, or even automate cloud resource configurations suitable for a given scientific task. To realize the potential of integration of recommenders in science gateways in order to spur research productivity,we present a novel “OnTimeRecommend" recommender system. The OnTimeRecommend comprises of several integrated recommender modules implemented as microservices that can be augmented to a science gateway in the form of a recommender-as-a-service. The guidance for use of the recommender modules in a science gateway is aided by a chatbot plug-in viz., Vidura Advisor. To validate our OnTimeRecommend, we integrate and show benefits for both novice and expert users in domain-specific knowledge discovery within two exemplar science gateways, one in neuroscience (CyNeuro) and the other in bioinformatics (KBCommons). 
    more » « less