Abstract We present measurements of the branching fractions of eight$$ {\overline{B}}^0 $$ →D(*)+K−$$ {K}_{(S)}^{\left(\ast \right)0} $$ ,B−→D(*)0K−$$ {K}_{(S)}^{\left(\ast \right)0} $$ decay channels. The results are based on data from SuperKEKB electron-positron collisions at the Υ(4S) resonance collected with the Belle II detector, corresponding to an integrated luminosity of 362 fb−1. The event yields are extracted from fits to the distributions of the difference between expected and observedBmeson energy, and are efficiency-corrected as a function ofm(K−$$ {K}_{(S)}^{\left(\ast \right)0} $$ ) andm(D(*)$$ {K}_{(S)}^{\left(\ast \right)0} $$ ) in order to avoid dependence on the decay model. These results include the first observation of$$ {\overline{B}}^0 $$ →D+K−$$ {K}_S^0 $$ ,B−→D*0K−$$ {K}_S^0 $$ , and$$ {\overline{B}}^0 $$ →D*+K−$$ {K}_S^0 $$ decays and a significant improvement in the precision of the other channels compared to previous measurements. The helicity-angle distributions and the invariant mass distributions of theK−$$ {K}_{(S)}^{\left(\ast \right)0} $$ systems are compatible with quasi-two-body decays via a resonant transition with spin-parityJP= 1−for theK−$$ {K}_S^0 $$ systems andJP= 1+for theK−K*0systems. We also present measurements of the branching fractions of four$$ {\overline{B}}^0 $$ →D(*)+$$ {D}_s^{-} $$ ,B−→D(*)0$$ {D}_s^{-} $$ decay channels with a precision compatible to the current world averages.
more »
« less
Precision Higgs width and couplings with a high energy muon collider
A<sc>bstract</sc> The interpretation of Higgs data is typically based on different assumptions about whether there can be additional decay modes of the Higgs or if any couplings can be bounded by theoretical arguments. Going beyond these assumptions requires either a precision measurement of the Higgs width or an absolute measurement of a coupling to eliminate a flat direction in precision fits that occurs when$$ \left|{g}_{hVV}/{g}_{hVV}^{SM}\right| $$ > 1, whereV=W±,Z. In this paper we explore how well a high energy muon collider can test Higgs physics without having to make assumptions on the total width of the Higgs. In particular, we investigate off-shell methods for Higgs production used at the LHC and searches for invisible decays of the Higgs to see how powerful they are at a muon collider. We then investigate the theoretical requirements on a model which can exist in such a flat direction. Combining expected Higgs precision with other constraints, the most dangerous flat direction is described by generalized Georgi-Machacek models. We find that by combining direct searches with Higgs precision, a high energy muon collider can robustly test single Higgs precision down to the$$ \mathcal{O}\left(.1\%\right) $$ level without having to assume SM Higgs decays. Furthermore, it allows one to bound new contributions to the width at the sub-percent level as well. Finally, we comment on how even in this difficult flat direction for Higgs precision, a muon collider can robustly test or discover new physics in multiple ways. Expanding beyond simple coupling modifiers/EFTs, there is a large region of parameter space that muon colliders can explore for EWSB that is not probed with only standard Higgs precision observables.
more »
« less
- Award ID(s):
- 2210533
- PAR ID:
- 10509774
- Publisher / Repository:
- JHEP
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2024
- Issue:
- 1
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract This paper reports a search for Higgs boson pair (hh) production in association with a vector boson ($$W\; {\text {o}r}\; Z$$ ) using 139 fb$$^{-1}$$ of proton–proton collision data at$$\sqrt{s}=13\,\text {TeV}$$ recorded with the ATLAS detector at the Large Hadron Collider. The search is performed in final states in which the vector boson decays leptonically ($$W\rightarrow \ell \nu ,\, Z\rightarrow \ell \ell ,\nu \nu $$ with$$\ell =e, \mu $$ ) and the Higgs bosons each decay into a pair ofb-quarks. It targetsVhhsignals from both non-resonanthhproduction, present in the Standard Model (SM), and resonanthhproduction, as predicted in some SM extensions. A 95% confidence-level upper limit of 183 (87) times the SM cross-section is observed (expected) for non-resonantVhhproduction when assuming the kinematics are as expected in the SM. Constraints are also placed on Higgs boson coupling modifiers. For the resonant search, upper limits on the production cross-sections are derived for two specific models: one is the production of a vector boson along with a neutral heavy scalar resonanceH, in the mass range 260–1000 GeV, that decays intohh, and the other is the production of a heavier neutral pseudoscalar resonanceAthat decays into aZboson andHboson, where theAboson mass is 360–800 GeV and theHboson mass is 260–400 GeV. Constraints are also derived in the parameter space of two-Higgs-doublet models.more » « less
-
A<sc>bstract</sc> A time-dependent, flavour-tagged measurement ofCPviolation is performed withB0→ D+D−and$$ {B}_s^0 $$ →$$ {D}_s^{+}{D}_s^{-} $$ decays, using data collected by the LHCb detector in proton-proton collisions at a centre-of-mass energy of 13 TeV corresponding to an integrated luminosity of 6 fb−1. InB0→ D+D−decays theCP-violation parameters are measured to be$$ {\displaystyle \begin{array}{c}{S}_{D^{+}{D}^{-}}=-0.552\pm 0.100\left(\textrm{stat}\right)\pm 0.010\left(\textrm{syst}\right),\\ {}{C}_{D^{+}{D}^{-}}=0.128\pm 0.103\left(\textrm{stat}\right)\pm 0.010\left(\textrm{syst}\right).\end{array}} $$ In$$ {B}_s^0 $$ →$$ {D}_s^{+}{D}_s^{-} $$ decays theCP-violating parameter formulation in terms ofϕsand|λ|results in$$ {\displaystyle \begin{array}{c}{\phi}_s=-0.086\pm 0.106\left(\textrm{stat}\right)\pm 0.028\left(\textrm{syst}\right)\textrm{rad},\\ {}\mid {\lambda}_{D_s^{+}{D}_s^{-}}\mid =1.145\pm 0.126\left(\textrm{stat}\right)\pm 0.031\left(\textrm{syst}\right).\end{array}} $$ These results represent the most precise single measurement of theCP-violation parameters in their respective channels. For the first time in a single measurement,CPsymmetry is observed to be violated inB0→ D+D−decays with a significance exceeding six standard deviations.more » « less
-
A<sc>bstract</sc> We develop Standard Model Effective Field Theory (SMEFT) predictions ofσ($$ \mathcal{GG} $$ →h), Γ(h→$$ \mathcal{GG} $$ ), Γ(h→$$ \mathcal{AA} $$ ) to incorporate full two loop Standard Model results at the amplitude level, in conjunction with dimension eight SMEFT corrections. We simultaneously report consistent Γ(h→$$ \overline{\Psi}\Psi $$ ) results including leading QCD corrections and dimension eight SMEFT corrections. This extends the predictions of the former processes Γ, σto a full set of corrections at$$ \mathcal{O}\left({\overline{v}}_T^2/{\varLambda}^2{\left(16{\pi}^2\right)}^2\right) $$ and$$ \mathcal{O}\left({\overline{v}}_T^4/{\Lambda}^4\right) $$ , where$$ {\overline{v}}_T $$ is the electroweak scale vacuum expectation value and Λ is the cut off scale of the SMEFT. Throughout, cross consistency between the operator and loop expansions is maintained by the use of the geometric SMEFT formalism. For Γ(h→$$ \overline{\Psi}\Psi $$ ), we include results at$$ \mathcal{O}\left({\overline{v}}_T^2/{\Lambda}^2\left(16{\pi}^2\right)\right) $$ in the limit where subleadingmΨ→ 0 corrections are neglected. We clarify how gauge invariant SMEFT renormalization counterterms combine with the Standard Model counter terms in higher order SMEFT calculations when the Background Field Method is used. We also update the prediction of the total Higgs width in the SMEFT to consistently include some of these higher order perturbative effects.more » « less
-
The4.2\sigma discrepancy in the(g-2) of the muon provides a hint that may indicate that physics beyond the standard model is at play. A multi-TeV scale muon collider provides a natural testing ground for this physics. In this paper, we discuss the potential to probe the BSM parameter space that is consistent with solving the(g-2)_{\mu} discrepancy in the language of the SMEFT, utilizing the statistical power provided by fitting event rates collected running at multiple energies. Our results indicate the importance of including interference between the BSM and the SM amplitudes, and illustrates how a muon collider running at a handful of lower energies and with less total collected luminosity can better significantly constrain the space of relevant SMEFT coefficients than would be possible for a single high energy run.more » « less
An official website of the United States government

