AbstractSummit disease, in which infected hosts seek heights (gravitropism), first noted in modern times by nineteenth-century naturalists, has been shown to be induced by disparate pathogens ranging from viruses to fungi. Infection results in dramatic changes in normal activity patterns, and such parasite manipulation of host behaviors suggests a strong selection for convergent outcomes albeit evolved via widely divergent mechanisms. The two best-studied examples involve a subset of viral and fungal pathogens of insects that induce “summiting” in infected hosts. Summiting presumably functions as a means for increasing the dispersal of the pathogen, thus significantly increasing fitness. Here, we review current advances in our understanding of viral- and fungal-induced summit disease and the host behavioral manipulation involved. Viral genes implicated in this process include a host hormone-targeting ecdysteroid UDP-glucosyltransferase (apparently essential for mediating summit disease induced by some viruses but not all) and a protein tyrosine phosphatase, with light dependance implicated. For summit disease-causing fungi, though much remains obscure, targeting of molting, circadian rhythms, sleep, and responses to light patterns appear involved. Targeting of host neuronal pathways by summit-inducing fungi also appears to involve the production of effector molecules and secondary metabolites that affect host muscular, immune, and/or neurological processes. It is hypothesized that host brain structures, particularly Mushroom Bodies (no relation to the fungus itself), important for olfactory association learning and control of locomotor activity, are critical targets for mediating summiting during infection. This phenomenon expands the diversity of microbial pathogen-interactions and host dynamics. Key points•Summit disease or height seeking (gravitropism) results from viral and fungal pathogens manipulating insect host behaviors presumably to increase pathogen dispersal.•Insect baculoviruses and select fungal pathogens exhibit convergent evolution in host behavioral manipulation but use disparate molecular mechanisms.•Targets for affecting host behavior include manipulation of host hormones, feeding, locomotion, and immune, circadian, and neurological pathways.
more »
« less
Serum proteomics reveals a tolerant immune phenotype across multiple pathogen taxa in wild vampire bats
Bats carry many zoonotic pathogens without showing pronounced pathology, with a few exceptions. The underlying immune tolerance mechanisms in bats remain poorly understood, although information-rich omics tools hold promise for identifying a wide range of immune markers and their relationship with infection. To evaluate the generality of immune responses to infection, we assessed the differences and similarities in serum proteomes of wild vampire bats (Desmodus rotundus) across infection status with five taxonomically distinct pathogens: bacteria (Bartonellaspp., hemoplasmas), protozoa (Trypanosoma cruzi), and DNA (herpesviruses) and RNA (alphacoronaviruses) viruses. From 19 bats sampled in 2019 in Belize, we evaluated the up- and downregulated immune responses of infected versus uninfected individuals for each pathogen. Using a high-quality genome annotation for vampire bats, we identified 586 serum proteins but found no evidence for differential abundance nor differences in composition between infected and uninfected bats. However, using receiver operating characteristic curves, we identified four to 48 candidate biomarkers of infection depending on the pathogen, including seven overlapping biomarkers (DSG2, PCBP1, MGAM, APOA4, DPEP1, GOT1, and IGFALS). Enrichment analysis of these proteins revealed that our viral pathogens, but not the bacteria or protozoa studied, were associated with upregulation of extracellular and cytoplasmatic secretory vesicles (indicative of viral replication) and downregulation of complement activation and coagulation cascades. Additionally, herpesvirus infection elicited a downregulation of leukocyte-mediated immunity and defense response but an upregulation of an inflammatory and humoral immune response. In contrast to our two viral infections, we found downregulation of lipid and cholesterol homeostasis and metabolism withBartonellaspp. infection, of platelet-dense and secretory granules with hemoplasma infection, and of blood coagulation pathways withT. cruziinfection. Despite the small sample size, our results suggest that vampire bats have a similar suite of immune mechanisms for viruses distinct from responses to the other pathogen taxa, and we identify potential biomarkers that can expand our understanding of pathogenesis of these infections in bats. By applying a proteomic approach to a multi-pathogen system in wild animals, our study provides a distinct framework that could be expanded across bat species to increase our understanding of how bats tolerate pathogens.
more »
« less
- Award ID(s):
- 2213854
- PAR ID:
- 10509821
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Immunology
- Volume:
- 14
- ISSN:
- 1664-3224
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Interrupting pathogen transmission between species is a priority strategy to mitigate zoonotic threats. However, avoiding counterproductive interventions requires knowing animal reservoirs of infection and the dynamics of transmission within them, neither of which are easily ascertained from the cross-sectional surveys that now dominate investigations into newly discovered viruses. We used biobanked sera and metagenomic data to reconstruct the transmission of recently discovered bat-associated influenza virus (BIV; H18N11) over 12 years in three zones of Peru. Mechanistic models fit under a Bayesian framework, which enabled joint inference from serological and molecular data, showed that common vampire bats maintain BIV independently of the now assumed fruit bat reservoir through immune waning and seasonal transmission pulses. A large-scale vampire bat cull targeting rabies incidentally halved BIV transmission, confirming vampire bats as maintenance hosts. Our results show how combining field studies, perturbation responses, and multi-data–type models can elucidate pathogen dynamics in nature and reveal pathogen-dependent effects of interventions.more » « less
-
Spiropoulou, Christina F (Ed.)ABSTRACT Bacterial pathogens remain poorly characterized in bats, especially in North America. We describe novel (and in some cases panmictic) hemoplasmas (10.1% positivity) and bartonellae (25.6% positivity) across three colonies of Mexican free-tailed bats (Tadarida brasiliensis), a partially migratory species that can seasonally travel hundreds of kilometers. Molecular analyses identified three novelCandidatushemoplasma species most similar to another novelCandidatusspecies in Neotropical molossid bats. We also detected novel hemoplasmas in sympatric cave myotis (Myotis velifer) and pallid bats (Antrozous pallidus), with sequences in the latter 96.5% related toCandidatusMycoplasma haematohominis. We identified nineBartonellagenogroups, including those in cave myotis with 96.1% similarity toCandidatusBartonella mayotimonensis. We also detectedBartonella rochalimaein migratory Mexican free-tailed bats, representing the first report of this human pathogen in the Chiroptera. Monthly sampling of migratory Mexican free-tailed bats during their North American occupancy period also revealed significant seasonality in infection for both bacterial pathogens, with prevalence increasing following spring migration, peaking in the maternity season, and declining into fall migration. The substantial diversity and seasonality of hemoplasmas and bartonellae observed here suggest that additional longitudinal, genomic, and immunological studies in bats are warranted to inform One Health approaches. IMPORTANCEBats have been intensively sampled for viruses but remain mostly understudied for bacterial pathogens. However, bacterial pathogens can have significant impacts on both human health and bat morbidity and even mortality. Hemoplasmas and bartonellae are facultative intracellular bacteria of special interest in bats, given their high prevalence and substantial genetic diversity. Surveys have also supported plausible zoonotic transmission of these bacteria from bats to humans, includingCandidatusMycoplasma haematohominis andCandidatusBartonella mayotimonensis. Greater characterization of these bacteria across global bat diversity (over 1,480 species) is therefore warranted to inform infection risks for both bats and humans, although little surveillance has thus far been conducted in North American bats. We here describe novel (and in some cases panmictic) hemoplasmas and bartonellae across three colonies of Mexican free-tailed bats and sympatric bat species. We find high genetic diversity and seasonality of these pathogens, including lineages closely related to human pathogens, such asBartonella rochalimae.more » « less
-
null (Ed.)The bovine immune system is known for its unusual traits relating to immunoglobulin and antiviral responses. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that cause post-translational deimination, contributing to protein moonlighting in health and disease. PADs also regulate extracellular vesicle (EV) release, forming a critical part of cellular communication. As PAD-mediated mechanisms in bovine immunology and physiology remain to be investigated, this study profiled deimination signatures in serum and serum-EVs in Bos taurus. Bos EVs were poly-dispersed in a 70–500 nm size range and showed differences in deiminated protein cargo, compared with whole sera. Key immune, metabolic and gene regulatory proteins were identified to be post-translationally deiminated with some overlapping hits in sera and EVs (e.g., immunoglobulins), while some were unique to either serum or serum-EVs (e.g., histones). Protein–protein interaction network analysis of deiminated proteins revealed KEGG pathways common for serum and serum-EVs, including complement and coagulation cascades, viral infection (enveloped viruses), viral myocarditis, bacterial and parasitic infections, autoimmune disease, immunodeficiency intestinal IgA production, B-cell receptor signalling, natural killer cell mediated cytotoxicity, platelet activation and hematopoiesis, alongside metabolic pathways including ferroptosis, vitamin digestion and absorption, cholesterol metabolism and mineral absorption. KEGG pathways specific to EVs related to HIF-1 signalling, oestrogen signalling and biosynthesis of amino acids. KEGG pathways specific for serum only, related to Epstein–Barr virus infection, transcription mis-regulation in cancer, bladder cancer, Rap1 signalling pathway, calcium signalling pathway and ECM-receptor interaction. This indicates differences in physiological and pathological pathways for deiminated proteins in serum-EVs, compared with serum. Our findings may shed light on pathways underlying a number of pathological and anti-pathogenic (viral, bacterial, parasitic) pathways, with putative translatable value to human pathologies, zoonotic diseases and development of therapies for infections, including anti-viral therapies.more » « less
-
Abstract Contaminants such as mercury are pervasive and can have immunosuppressive effects on wildlife. Impaired immunity could be important for forecasting pathogen spillover, as many land‐use changes that generate mercury contamination also bring wildlife into close contact with humans and domestic animals. However, the interactions among contaminants, immunity and infection are difficult to study in natural systems, and empirical tests of possible directional relationships remain rare.We capitalized on extreme mercury variation in a diverse bat community in Belize to test association among contaminants, immunity and infection. By comparing a previous dataset of bats sampled in 2014 with new data from 2017, representing a period of rapid agricultural land conversion, we first confirmed bat species more reliant on aquatic prey had higher fur mercury. Bats in the agricultural habitat also had higher mercury in recent years. We then tested covariation between mercury and cellular immunity and determined if such relationships mediated associations between mercury and bacterial pathogens. As bat ecology can dictate exposure to mercury and pathogens, we also assessed species‐specific patterns in mercury–infection relationships.Across the bat community, individuals with higher mercury had fewer neutrophils but not lymphocytes, suggesting stronger associations with innate immunity. However, the odds of infection for haemoplasmas andBartonellaspp. were generally lowest in bats with high mercury, and relationships between mercury and immunity did not mediate infection patterns. Mercury also showed species‐ and clade‐specific relationships with infection, being associated with especially low odds for haemoplasmas inPteronotus mesoamericanusandDermanura phaeotis. ForBartonellaspp., mercury was associated with particularly low odds of infection in the genusPteronotusbut high odds in the subfamily Stenodermatinae.Synthesis and application. Lower general infection risk in bats with high mercury despite weaker innate defense suggests contaminant‐driven loss of pathogen habitat (i.e. anemia) or vector mortality as possible causes. Greater attention to these potential pathways could help disentangle relationships among contaminants, immunity and infection in anthropogenic habitats and help forecast disease risks. Our results also suggest that contaminants may increase infection risk in some taxa but not others, emphasizing the importance of considering surveillance and management at different phylogenetic scales.more » « less
An official website of the United States government

