Abstract A liquid‐phase polymer‐to‐ceramic approach is reported for the synthesis of hafnium carbide (HfC)/hafnium oxide (HfO2) composite particles from a commercial precursor. Typically, HfC ceramics have been obtained by sintering of fine powders, which usually results in large particle size and high porosity during densification. In this study a single‐source liquid precursor was first cured at low temperature and then pyrolyzed at varying conditions to achieve HfC ceramics. The chemical structure of the liquid and cured precursors, and the resulting HfC ceramics was studied using various analytical techniques. The nuclear magnetic resonance and Fourier transform infrared spectroscopy indicated the presence of partially hydrated hafnium oxychloride (Hf–O–Cl·nH2O) in the precursor. Scanning electron microscopy of the resulting HfC crystals showed a size distribution in the range of approx. 600–700 nm. The X‐ray diffraction of the pyrolyzed samples confirmed the formation of crystalline HfC along with monoclinic‐HfO2and free carbon phase. The formation of HfO2in the ceramics was significantly reduced by controlling the low‐temperature curing temperature. Pyrolysis at various temperatures showed that HfC formation occurred even at 1000°C. These results show that the reported precursor could be promising for the direct synthesis of ultrahigh temperature HfC ceramics and for precursor infiltration pyrolysis of reinforced ceramic matrix composites.
more »
« less
Crystallographic Study of Product Phases of Carbothermic Reduction and Nitridation of Hafnium Dioxide
Details of the carbothermic reduction/nitridation to synthesize hafnium nitride (HfN) and hafnium carbide (HfC) are scarce in the literature. Therefore, this current study was carried out to evaluate two pathways for synthesizing these two refractory materials: direct nitridation and carbothermic reduction/nitridation. Two mixtures of hafnium dioxide and carbon with C/ HfO2 molar ratios of 2.15 and 3.1 were nitridized directly using flowing nitrogen gas at elevated temperatures (1300−1700 °C). The 3.1 C/HfO2 molar ratio mixture was also carbothermically reduced under flowing argon gas to synthesize HfC, which was converted into HfN by introducing a nitridation step under both N2(g) and N2(g)-10% H2(g). X-ray diffraction results showed the formation of HfN at 1300 and 1400 °C and HfC1−yNy at ≥1400 °C under direct nitridation of samples using a C/HfO2 molar ratio of 2.15. These phase analysis data together with lower lattice strain and greater crystallite sizes of HfC1−yNy that formed at higher temperatures suggested that the HfC1−yNy phase is preferred over HfN at those temperatures. Carbothermic reduction of 3.1 C/HfO2 molar ratio samples under an inert atmosphere produced single-phased HfC with no significant levels of dissolved oxygen. Carbothermic reduction nitridation made two phases of different carbon levels (HfC1−yNy and HfC1−y′Ny′, where y′ < y), while direct nitridation produced a single HfC1−yNy phase under both N2 and N2-10% H2 cover gas environments.
more »
« less
- Award ID(s):
- 2047084
- PAR ID:
- 10509885
- Publisher / Repository:
- ACS Publications
- Date Published:
- Journal Name:
- Inorganic Chemistry
- Volume:
- 62
- Issue:
- 30
- ISSN:
- 0020-1669
- Page Range / eLocation ID:
- 11910 to 11919
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We report here extracting SiO2 as spirosiloxane [(CH3)2C(O)CH2CH(O)CH3]2Si from rice hull ash (RHA) to carefully control the SiO2 : C mole ratios, allowing direct carbothermal reduction to SiC, Si3N4, or Si2N2O without the need to add extra carbon and as a mechanism to preserve the original nanocomposite structure. We can adjust SiO2 : C ratios from 2 : 15 to 13 : 35 simply by reacting RHA with hexylene glycol (HG) with catalytic base to distillatively extract SiO2 to produce silica depleted RHA (SDRHA) with SiO2 contents of 40–65 wt% and corresponding carbon contents of 60–35 wt% with specific surface areas (SSAs) of >400 m2 g−1. On heating SDRHA40–65 at 1400–1500 °C in an Ar, N2, or N2–H2 atmosphere, XRD patterns reveal formation of SiC, Si3N4, or Si2N2O as the major phase with some residual hard carbon. SEM studies reveal mixtures of particles and whiskers in the products, which show BET specific surface areas >40 m2 g−1 after oxidative removal of excess carbon. Dilute acid and boiling water prewashing of RHA with milling eliminates typical product impurities compared to those found using conventional carbothermal reduction of agricultural wastes, which qualifies the resulting composites as components for electrochemical energy storage devices among other applications, to be reported elsewhere.more » « less
-
Here we present results of gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) in porous organic cages (POCs) incorporated into fluorinated copolyimides polymers (FCPs). The FCPs were synthesized by the thermal and chemical imidization reaction of fluorinated dianhydrides, nonfluorinated dianhydride, and nonfluorinated diamine. Asymmetric hollow fiber membranes formed by the dry-jet/wet-quench spinning process. Once fresh FCP fibers were synthesized, they were crosslinked with POCs, vacuum dried at 90 °C. We investigated the uptake, gas selectivity and diffusion of different gases (C3H8, C3H6, CO2, and H2) over synthesized POC-mixed matrixed membranes (POC-MMM) at 25 °C and pressures up to 1 bar. At 1 bar and 25 °C, C3H8, C3H6 adsorption capacities reached 2.77 and 2.65 mmol/g over POC-MMM, respectively, while CO2, CH4, CO, N2 and H2 adsorption capacities of 1.48, 0.84, 0.33, 0.11, and 0.068 mmol/g, respectively. Furthermore, stable CMS membrane was formed by pyrolysis of POC-MMMs under an inert argon atmosphere at 1 atm. To test the gas transport properties of CMS-derived POC/MMM, a lab-scale hollow fiber module with two-five fibers was constructed. The results of longer-term operation of synthesized CMS membrane that was continuously operated for 264 h (10 days) with an equimolar binary H2/CO2, CH4/CO2 and C3H6/C3H8 feed at 25°C and 1 bar feed pressure. The modification yielded promising results in the reduction of physical aging of CMS membranes.more » « less
-
Molybdenum and its alloys are of interest for applications with extreme thermomechanical requirements such as nuclear energy systems, electronics, aerospace vehicles, and hypersonic vehicles. In the present study, pure molybdenum and samples with added hafnium carbide (HfC) grain refiners were produced using field assisted sintering technology (FAST). The molybdenum and HfC reacted with oxygen to produce MoO2 and HfO2, and increased HfC content from 1 wt% to 5 wt% decreased grain size while the microhardness correspondingly increased. Room temperature three-point bending tests were conducted, and finite element modeling was used to define HfC-dependent bilinear material models. The presence of oxygen most severely affected pure molybdenum, which exhibited little strength and limited ductility, whereas for samples with added HfC, HfO2 was present, resulting in increased toughness hypothesized to be due to microcrack toughening. The samples with 1 wt% added HfC had the greatest energy absorption capability.more » « less
-
Membrane-based separations offer the potential for the lowest energy demand requirements of all separation options. Among all nanoporous membranes, the carbon molecular sieves (CMS), metal-organic frameworks (MOFs), and mixed-matrix membranes (MMMs) with angstrom level molecular discrimination properties makes them appealing for separating a wide spectrum of gas-pairs. Here we present results of gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) in porous organic cages (POCs) incorporated into fluorinated copolyimides polymers (FCPs). The FCPs were synthesized by the iridization reaction of fluorinated dianhydrides, nonfluorinated dianhydride, and nonfluorinated diamine. Asymmetric hollow fiber membranes formed by the dry-jet/wet-quench spinning process. Once fresh FCP fibers were synthesized, they were crosslinked with POCs, vacuum dried at 90 °C. We investigated the uptake, gas selectivity and diffusion of different gases (C2H6, C2H4, C3H8, C3H6, H2, N2, CO2, and CH4) over synthesized POC-mixed matrixed membranes (POC-MMM) at 25 °C and pressures up to 1 bar. At 1 bar and 25 °C, C2H6, C2H4, C3H8, C3H6 adsorption capacities reached to 42.61, 2.56, 2.77 and 2.65 mmol/g over POC-MMM, respectively, while CO2, CH4, CO, N2 and H2 adsorption capacities of 1.48, 0.84, 0.33, 0.11, and 0.068 mmol/g, respectively. Furthermore, stable CMS membrane were formed by pyrolysis of POC-MMMs under an inert argon atmosphere at 1 atm. To test the gas transport properties of CMS-derived POC/MMM, a lab-scale hollow fiber module with two-five fibers was constructed. The results of longer-term operation of synthesized CMS membrane that was continuously operated for 264 h (10 days) with an equimolar binary H2/CO2, CH4/CO2 and C3H6/C3H8 feed at 25°C and 1 bar feed pressure. The modification yielded promising results in the reduction of physical aging of CMS membranes.more » « less
An official website of the United States government

