Abstract Constructing an artificial solid electrolyte interphase (SEI) on lithium metal electrodes is a promising approach to address the rampant growth of dangerous lithium morphologies (dendritic and dead Li0) and low Coulombic efficiency that plague development of lithium metal batteries, but how Li+transport behavior in the SEI is coupled with mechanical properties remains unknown. We demonstrate here a facile and scalable solution-processed approach to form a Li3N-rich SEI with a phase-pure crystalline structure that minimizes the diffusion energy barrier of Li+across the SEI. Compared with a polycrystalline Li3N SEI obtained from conventional practice, the phase-pure/single crystalline Li3N-rich SEI constitutes an interphase of high mechanical strength and low Li+diffusion barrier. We elucidate the correlation among Li+transference number, diffusion behavior, concentration gradient, and the stability of the lithium metal electrode by integrating phase field simulations with experiments. We demonstrate improved reversibility and charge/discharge cycling behaviors for both symmetric cells and full lithium-metal batteries constructed with this Li3N-rich SEI. These studies may cast new insight into the design and engineering of an ideal artificial SEI for stable and high-performance lithium metal batteries.
more »
« less
Using NMR spectroscopy to link structure to function at the Li solid electrolyte interphase
The performance of Li metal batteries is tightly coupled to the composition and properties of the solid electrolyte interphase (SEI). Even though the role of the SEI in battery function is well understood (e.g., it must be electronically insulating and ionically conductive, it must enable uniform Li+ flux to the electrode to prevent filament growth, it must accommodate the large volume changes of Li electrodeposition), the challenges associated with probing this delicate composite layer have hindered the development of Li metal batteries for practical applications. In this review, we detail how nuclear magnetic resonance (NMR) spectroscopy can help bridge this gap in characterization due to its unique ability to describe local structure (e.g., changes in crystallite size and amorphous species in the SEI) in conjunction with ion dynamics while connecting these properties to electrochemical behavior. By leveraging NMR, we can gain molecular-level insight to aid in the design of Li surfaces and enable reactive anodes for next-generation, high-energy-density batteries.
more »
« less
- Award ID(s):
- 2045262
- PAR ID:
- 10510027
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Joule
- Volume:
- 8
- ISSN:
- 2542-4351
- Page Range / eLocation ID:
- 1-17
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Li dendrite formed in Li metal batteries can be categorized into two different types. One is the detrimental Li dendrite that heads towards the separator with a potential to short cell. The other is the ill-defined fibrous Li formed within bulk Li metal. The detrimental Li dendrite may cause cell short, while the other dendrites, covered by SEI, mainly increase cell impedance and terminate the cell operation, most often, before any “short” really happens. Without decoupling these two different Li dendrites, it is hard to develop any effective approach to realize both stable and safe Li metal batteries. Herein, a straightforward approach is proposed to induce the growth of detrimental dendritic Li so the cells are “shorted” frequently and consistently. Based on this new protocol, various electrolytes are revisited and the SEI derived are compared and quantified, providing new insights for addressing the challenges in rechargeable Li metal battery technologies.more » « less
-
null (Ed.)Composite polymer electrolytes (CPEs) for solid-state Li metal batteries (SSLBs) still suffer from gradually increased interface resistance and unconstrained Li dendrite growth. Herein, we addressed the challenges by designing a LiF-rich inorganic solid-electrolyte interphase (SEI) through introducing a fluoride-salt concentrated interlayer on CPE film. The rigid and flexible CPE helps accommodate the volume change of electrodes, while the polymeric high-concentrated electrolyte (PHCE) surface-layer regulates Li-ion flux due to the formation of a stable LiF-rich SEI via anion reduction. The designed CPE-PHCE presents enhanced ionic conductivity and high oxidation stability of > 5.0V (vs. Li/Li+). What’s more, it dramatically reduces the interfacial resistance and achieves a high critical current density of 4.5 mA cm-2 for dendrite-free cycling. The SSLBs, fabricated with thin CPE-PHCE membrane (< 100 μm) and Co-free LiNiO2 cathode, exhibit exceptional electrochemical performance and long cycling stability. This approach of SEI design can also be applied to other types of batteries.more » « less
-
Suffering from critical instability of lithium (Li) anode, the most commercial electrolytes, carbonate-ester electrolytes, have been restrictedly used in high-energy Li metal batteries (LMBs) despite of their broad implementation in lithium-ion batteries. Here, abundant, natural corn protein, zein, is exploited as a novel additive to stabilize Li anode and effectively prolong the cycling life of LMBs based on carbonate-ester electrolyte. It is discovered that the denatured zein is involved in the formation of solid electrolyte interphase (SEI), guides Li+ deposition and repairs the cracked SEI. In specific, the zein-rich SEI benefits the anion immobilization, enabling uniform Li+ deposition to diminish dendrite growth; the preferential zein-Li reaction effectively repairs the cracked SEI, protecting Li from parasite reactions. The resulting symmetrical Li cell exhibits a prolonged cycling life to over 350 h from <200 h for pristine cell at 1 mA cm 2 with a capacity of 1 mAh cm^ 2. Paired with LiFePO4 cathode, zein additive markedly improves the electrochemical performance including a higher capacity of 130.1 mAh g^ 1 and a higher capacity retention of ~ 80 % after 200 cycles at 1 C. This study demonstrates a natural protein to be an effective additive for the most commercial electrolytes for advancing performance of LMBs.more » « less
-
The poor interfacial stability of Li metal leads to formation of unstable solid-electrolyte interphases (SEIs) and severely limits its practical applications. Protecting Li metal with an artificial SEI that has balanced stability, conductivity and mechanical strength is critical. Here we demonstrate a design strategy for stabilizing Li using Mo 6 S 8 /carbon artificial SEI films. These films are directly coated on Li foil and the Mo 6 S 8 particles provide ordered conduction channels for fast but regulated Li-ion flux, and provide hybrid anodes that have nearly four times higher exchange current densities. They also have seamless contact with Li metal and protect it from parasitic reactions, and hence significantly improve its stability. Consequently, Li metal batteries in which the hybrid anodes were paired with LiNi 0.8 Mn 0.1 Co 0.1 O 2 cathodes (3.0 mA h per cell) exhibited significantly improved cycling stability (63% vs. 25% retention) and a stabilized Li interphase compared with pristine Li anodes.more » « less
An official website of the United States government

