skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Widespread habitat loss leads to ecosystem‐scale decrease in trophic function
Abstract Natural and anthropogenic disturbances have led to rapid declines in the amount and quality of available habitat in many ecosystems. Many studies have focused on how habitat loss has affected the composition and configuration of habitats, but there have been fewer studies that investigate how this loss affects ecosystem function. We investigated how a large‐scale seagrass die‐off altered the distribution of energetic resources of three seagrass‐associated consumers with varied resource use patterns. Using long‐term benthic habitat monitoring data and resource use data from Bayesian stable isotope mixing models, we generated energetic resource landscapes (E‐scapes) annually between 2007 and 2019.E‐scapes link the resources being used by a consumer to the habitats that produce those resources to calculate a habitat resource index as a measurement of energetic quality of the landscape. Overall, our results revealed that following the die‐off there was a reduction in trophic function across all species in areas affected by the die‐off event, but the response was species‐specific and dependent on resource use and recovery patterns. This study highlights how habitat loss can lead to changes in ecosystem function. Incorporating changes in ecosystem function into models of habitat loss could improve understanding of how species will respond to future change.  more » « less
Award ID(s):
2025954 1832229
PAR ID:
10510065
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Wiley Online Library
Date Published:
Journal Name:
Global Change Biology
Volume:
30
Issue:
4
ISSN:
1354-1013
Page Range / eLocation ID:
e17263
Subject(s) / Keyword(s):
ecosystem function E-scapes global change habitat degradation habitat resource index seagrass die-off
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Coll, Marta (Ed.)
    Abstract Macrophyte foundation species provide both habitat structure and primary production, and loss of these habitats can alter species interactions and lead to changes in energy flow in food webs. Extensive seagrass meadows in Florida Bay have recently experienced a widespread loss of seagrass habitat due to a Thalassia testudinum mass mortality event in 2015 associated with prolonged hypersalinity and bottom-water anoxia. Using stable isotope analysis paired with Bayesian mixing models, we investigated the basal resource use of seven species of seagrass-associated consumers across Florida Bay in areas affected by the 2015 seagrass die-off. Three years after the die-off, basal resource use did not differ for species collected inside and outside the die-off affected areas. Instead, consumers showed seasonal patterns in basal resource use with seagrass the most important in the wet season (58%), while epiphytes were the most important in the dry season (44%). Additionally, intraspecific spatial variability in resource use was lower in the wet season compared to the dry season. We were unable to detect a legacy effect of a major disturbance on the basal resource use of the most common seagrass-associated consumers in Florida Bay. 
    more » « less
  2. Energetic resources and habitat distribution are inherently linked. Energetic resource availability is a major driver of the distribution of consumers, but estimating how much specific habitats contribute to the energetic resource needs of a consumer can be problematic. We present a new approach that combines remote sensing information and stable isotope ecology to produce maps of energetic resources (E-scapes). E-scapes project species-specific resource use information onto the landscape to classify areas based on energetic importance. Using our E-scapes, we investigated the relationship between energetic resource distribution and white shrimp distribution and how the scale used to generate the E-scape mediated this relationship. E-scapes successfully predicted the size, abundance, biomass, and total energy of a consumer in salt marsh habitats in coastal Louisiana, USA at scales relevant to the movement of the consumer. Our E-scape maps can be used alone or in combination with existing models to improve habitat management and restoration practices and have potential to be used to test fundamental movement theory. 
    more » « less
  3. Habitat loss is rarely truly random and often occurs selectively with respect to the plant species comprising the habitat. Such selective habitat removal that decreases plant species diversity, that is, habitat simplification or homogenization, may have two negative effects on other species. First, the reduction in plant community size (number of individuals) represents habitat loss for species at higher trophic levels who use plants as habitat. Second, when plants are removed selectively, the resulting habitat simplification decreases the diversity of resources available to species at higher trophic levels. It follows that habitat loss combined with simplification will reduce biodiversity more than habitat loss without simplification. To test this, we experimentally implemented two types of habitat loss at the plant community level and compared biodiversity of resident arthropods between habitat loss types. In the first type of habitat loss, we reduced habitats by 50% nonselectively, maintaining original relative abundance and diversity of plant species and therefore habitat and resource diversity for arthropods. In the second type of habitat loss, we reduced habitats by 50% selectively, removing all but one common plant species, dramatically simplifying habitat and resources for arthropods. We replicated this experiment across three common plant species: Asclepias tuberosa, Solidago altissima, and Baptisia alba. While habitat loss with simplification reduced arthropod species richness compared with habitat loss without simplification, neither type of habitat loss affected diversity, measured as effective number of species (ENS), or species evenness as compared with controls. Instead, differences in ENS and evenness were explained by the identity of the common plant species. Our results indicate that the quality of remaining habitat, in our case plant species identity, may be more important for multi‐trophic diversity than habitat diversity per se. 
    more » « less
  4. Abstract Increases in species richness with habitat area (species–area relationship, or SAR) and increases in ecosystem function with species richness (biodiversity–ecosystem functioning, or BEF) are widely studied ecological patterns. Incorporating functional trait analysis into assemblage datasets may help clarify interpretations of SAR and BEF relationships in natural ecological systems. For example, life history theory can be used to make predictions about what species are most important in generating ecosystem function given a certain set of environmental conditions. We used quantitative assemblage data for freshwater mussels at nine sites in western Alabama, USA, to test for SAR and BEF relationships. At each site, we calculated species richness, mussel assemblage density, and two fundamental metrics of ecosystem function: biomass and secondary production. We also tested whether the proportional biomass and production contributions from species belonging to each of three life history strategies—opportunistic strategistsadapted to unstable or frequently disturbed habitats,periodic strategistsadapted to habitats subject to predictable large‐scale disturbances, andequilibrium strategistsadapted to stable habitats—varied longitudinally with stream drainage area, a proxy for habitat area. Species richness increased with stream size (SAR), and both biomass and production increased with species richness (BEF) and mussel density. There were few longitudinal changes in the proportional contributions of the different life history strategy classifications that we used, but the invasive clamCorbicula flumineacontributed proportionally more biomass and production at sites that had smaller drainage areas. This study provides further evidence for a clear longitudinal SAR in stream‐dwelling taxa. It also suggests BEF relationships for biomass and secondary production in natural assemblages but underscores the importance of assemblage density in BEF studies that use observational field data. Variation in proportional biomass and production contributions by different life history strategies was likely limited by the size of the stream size gradient in our study, as contributions were uniformly high for species with life history traits better adapted to stable and productive habitats such as mid‐sized rivers with low or predictable hydrologic disturbance frequencies. This highlights the need to understand how organisms' functional traits govern their relationships to the environment at different scales. 
    more » « less
  5. Abstract As efforts to restore coastal habitats accelerate, it is critical that investments are targeted to most effectively mitigate and reverse habitat loss and its impacts on biodiversity. One likely but largely overlooked impediment to effective restoration of habitat-forming organisms is failing to explicitly consider non-habitat-forming animals in restoration planning, implementation, and monitoring. These animals can greatly enhance or degrade ecosystem function, persistence, and resilience. Bivalves, for instance, can reduce sulfide stress in seagrass habitats and increase drought tolerance of saltmarsh vegetation, whereas megaherbivores can detrimentally overgraze seagrass or improve seagrass seed germination, depending on the context. Therefore, understanding when, why, and how to directly manipulate or support animals can enhance coastal restoration outcomes. In support of this expanded restoration approach, we provide a conceptual framework, incorporating lessons from structured decision-making, and describe potential actions that could lead to better restoration outcomes using case studies to illustrate practical approaches. 
    more » « less