skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: E‐scape : Consumer‐specific landscapes of energetic resources derived from stable isotope analysis and remote sensing
Energetic resources and habitat distribution are inherently linked. Energetic resource availability is a major driver of the distribution of consumers, but estimating how much specific habitats contribute to the energetic resource needs of a consumer can be problematic. We present a new approach that combines remote sensing information and stable isotope ecology to produce maps of energetic resources (E-scapes). E-scapes project species-specific resource use information onto the landscape to classify areas based on energetic importance. Using our E-scapes, we investigated the relationship between energetic resource distribution and white shrimp distribution and how the scale used to generate the E-scape mediated this relationship. E-scapes successfully predicted the size, abundance, biomass, and total energy of a consumer in salt marsh habitats in coastal Louisiana, USA at scales relevant to the movement of the consumer. Our E-scape maps can be used alone or in combination with existing models to improve habitat management and restoration practices and have potential to be used to test fundamental movement theory.  more » « less
Award ID(s):
1832229 2025954
PAR ID:
10303493
Author(s) / Creator(s):
 ;  ;  ;  ;  
Date Published:
Journal Name:
Journal of Animal Ecology
ISSN:
0021-8790
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Natural and anthropogenic disturbances have led to rapid declines in the amount and quality of available habitat in many ecosystems. Many studies have focused on how habitat loss has affected the composition and configuration of habitats, but there have been fewer studies that investigate how this loss affects ecosystem function. We investigated how a large‐scale seagrass die‐off altered the distribution of energetic resources of three seagrass‐associated consumers with varied resource use patterns. Using long‐term benthic habitat monitoring data and resource use data from Bayesian stable isotope mixing models, we generated energetic resource landscapes (E‐scapes) annually between 2007 and 2019.E‐scapes link the resources being used by a consumer to the habitats that produce those resources to calculate a habitat resource index as a measurement of energetic quality of the landscape. Overall, our results revealed that following the die‐off there was a reduction in trophic function across all species in areas affected by the die‐off event, but the response was species‐specific and dependent on resource use and recovery patterns. This study highlights how habitat loss can lead to changes in ecosystem function. Incorporating changes in ecosystem function into models of habitat loss could improve understanding of how species will respond to future change. 
    more » « less
  2. Although research on wildlife species across taxa has shown that males and females may differentially select habitat, sex-specific habitat suitability models for endangered species are uncommon. We developed sex-specific models for Bengal tigers (Panthera tigris) based on camera trapping data collected from 20 January to 22 March 2010 within Chitwan National Park, Nepal, and its buffer zone. We compared these to a sex-indiscriminate habitat suitability model to assess the benefits of a sex-specific approach to habitat suitability modeling. Our sex-specific models produced more informative and detailed habitat suitability maps and highlighted vital differences in the spatial distribution of suitable habitats for males and females, specific associations with different vegetation types, and habitat use near human settlements. Improving and refining habitat models for this and other critically endangered species provides the necessary information to meet established conservation goals and population recovery targets. 
    more » « less
  3. Abstract Understanding how aquatic animals select and partition resources provides relevant information about community dynamics that can be used to help manage conservation efforts. The critically endangered hawksbill sea turtle ( Eretmochelys imbricata ) spends an extended part of its juvenile development in coastal waters. A strong proclivity to remain resident in small areas, often in high density, raises questions about how juveniles partition resources including selection of habitat and spatial overlap among conspecifics. Using between 36 and 41 acoustic receivers in the 1.5 km 2 study site, this study quantified day-and-night habitat selection, as well as 2D and 3D space use of 23 juvenile hawksbills within two adjacent Caribbean foraging grounds—Brewers Bay and Hawksbill Cove, St. Thomas, US Virgin Islands—between 2015 and 2018. We found that coral reef, rock, and the artificial dolosse forming an airport runway, were the most strongly selected habitats based on resource selection indices. Individual activity spaces in 2D and 3D were both larger during the day compared to night, although the same parts of the bay were used by each individual during both periods. The 3D approach also showed deeper space use during the day. Weekly comparisons of activity space between individuals showed limited overlap (mean 95% UD overlap; day: 0.15 (2D) and 0.07 (3D), night: 0.11 (2D) and 0.03 (3D)), suggesting some degree of resource partitioning or territoriality. Results from this study provide relevant space use information for resource management of juvenile hawksbills, in which many populations are facing habitat degradation and population declines. 
    more » « less
  4. The critically endangered North Atlantic right whale (Eubalaena glacialis) faces significant anthropogenic mortality. Recent climatic shifts in traditional habitats have caused abrupt changes in right whale distributions, challenging traditional conservation strategies. Tools that can help anticipate new areas where E. glacialis might forage could inform proactive management. In this study, we trained boosted regression tree algorithms with fine-resolution modeled environmental covariates to build prey copepod (Calanus) species-specific models of historical and future distributions of E. glacialis foraging habitat on the Northwest Atlantic Shelf, from the Mid-Atlantic Bight to the Labrador Shelf. We determined foraging suitability using E. glacialis foraging thresholds for Calanus spp. adjusted by a bathymetry-dependent bioenergetic correction factor based on known foraging behavior constraints. Models were then projected to 2046–2065 and 2066–2085 modeled climatologies for representative concentration pathway scenarios RCP 4.5 and RCP 8.5 with the goal of identifying potential shifts in foraging habitat. The models had generally high performance (area under the receiver operating characteristic curve > 0.9) and indicated ocean bottom conditions and bathymetry as important covariates. Historical (1990–2015) projections aligned with known areas of high foraging habitat suitability as well as potential suitable areas on the Labrador Shelf. Future projections suggested that the suitability of potential foraging habitat would decrease in parts of the Gulf of Maine and southwestern Gulf of Saint Lawrence, while potential habitat would be maintained or improved on the western Scotian Shelf, in the Bay of Fundy, on the Newfoundland and Labrador shelves, and at some locations along the continental shelf breaks. Overall, suitable habitat is projected to decline. Directing some survey efforts toward emerging potential foraging habitats can enable conservation management to anticipate the type of distribution shifts that have led to high mortality in the past. 
    more » « less
  5. Perception is central to the survival of an individual for many reasons, especially as it affects the ability to gather resources. Consequently, costs associated with perception are partially shaped by resource availability. Understanding the interplay of environmental factors (such as the density and distribution of resources) with species-specific factors (such as growth rate, mutation, and metabolic costs) allows the exploration of possible trajectories by which perception may evolve. Here, we used an agent-based foraging model with a context-dependent movement strategy in which each agent switches between undirected and directed movement based on its perception of resources. This switching behavior is central to our goal of exploring how environmental and species-specific factors determine the evolution and maintenance of perception in an ecological system. We observed a non-linear response in the evolved perceptual ranges as a function of parameters in our model. Overall, we identified two groups of parameters, one of which promotes evolution of perception and another group that restricts it. We found that resource density, basal energy cost, perceptual cost and mutation rate were the best predictors of the resultant perceptual range distribution, but detailed exploration indicated that individual parameters affect different parts of the distribution in different ways. 
    more » « less