This content will become publicly available on March 25, 2025
Active learning (AL) aims to improve model performance within a fixed labeling budget by choosing the most informative data points to label. Existing AL focuses on the single-domain setting, where all data come from the same domain (e.g., the same dataset). However, many real-world tasks often involve multiple domains. For example, in visual recognition, it is often desirable to train an image classifier that works across different environments (e.g., different backgrounds), where images from each environment constitute one domain. Such a multi-domain AL setting is challenging for prior methods because they (1) ignore the similarity among different domains when assigning labeling budget and (2) fail to handle distribution shift of data across different domains. In this paper, we propose the first general method, dubbed composite active learning (CAL), for multi-domain AL. Our approach explicitly considers the domain-level and instance-level information in the problem; CAL first assigns domain-level budgets according to domain-level importance, which is estimated by optimizing an upper error bound that we develop; with the domain-level budgets, CAL then leverages a certain instance-level query strategy to select samples to label from each domain. Our theoretical analysis shows that our method achieves a better error bound compared to current AL methods. Our empirical results demonstrate that our approach significantly outperforms the state-of-the-art AL methods on both synthetic and real-world multi-domain datasets. Code is available at https://github.com/Wang-ML-Lab/multi-domain-active-learning.
more » « less- PAR ID:
- 10510126
- Publisher / Repository:
- AAAI Press 2024
- Date Published:
- Journal Name:
- Proceedings of the AAAI Conference on Artificial Intelligence
- Volume:
- 38
- Issue:
- 11
- ISSN:
- 2159-5399
- Page Range / eLocation ID:
- 12286 to 12294
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Stream-based active learning methods assume that data instances arrive in sequence and the decision must be made to query an instance or not as it arrives. In mobile health and human activity recognition, the data stream is often block-structured where instances in the same block have the same label, but the boundaries between blocks are unobserved. In this paper, we propose an approach to active learning in this setting where we simultaneously learn to segment the stream while learning an instance-level discriminative classifier. We show that by propagating collected labels into inferred segments, we can learn improved predictive models with significantly fewer queries.more » « less
-
The goal of active learning is to achieve the same accuracy achievable by passive learning, while using much fewer labels. Exponential savings in terms of label complexity have been proved in very special cases, but fundamental lower bounds show that such improvements are impossible in general. This suggests a need to explore alternative goals for active learning. Learning with abstention is one such alternative. In this setting, the active learning algorithm may abstain from prediction and incur an error that is marginally smaller than random guessing. We develop the first computationally efficient active learning algorithm with abstention. Our algorithm provably achieves p o l y l o g ( 1 ε ) label complexity, without any low noise conditions. Such performance guarantee reduces the label complexity by an exponential factor, relative to passive learning and active learning that is not allowed to abstain. Furthermore, our algorithm is guaranteed to only abstain on hard examples (where the true label distribution is close to a fair coin), a novel property we term \emph{proper abstention} that also leads to a host of other desirable characteristics (e.g., recovering minimax guarantees in the standard setting, and avoiding the undesirable noise-seeking'' behavior often seen in active learning). We also provide novel extensions of our algorithm that achieve \emph{constant} label complexity and deal with model misspecification.more » « less
-
Learning from label proportions (LLP) is a weakly supervised classification problem where data points are grouped into bags, and the label proportions within each bag are observed instead of the instance-level labels. The task is to learn a classifier to predict the labels of future individual instances. Prior work on LLP for multi-class data has yet to develop a theoretically grounded algorithm. In this work, we propose an approach to LLP based on a reduction to learning with label noise, using the forward correction (FC) loss of Patrini et al. [30]. We establish an excess risk bound and generalization error analysis for our approach, while also extending the theory of the FC loss which may be of independent interest. Our approach demonstrates improved empirical performance in deep learning scenarios across multiple datasets and architectures, compared to the leading methods.more » « less
-
Learning from label proportions (LLP) is a weakly supervised classification problem where data points are grouped into bags, and the label proportions within each bag are observed instead of the instance-level labels. The task is to learn a classifier to predict the labels of future individual instances. Prior work on LLP for multi-class data has yet to develop a theoretically grounded algorithm. In this work, we propose an approach to LLP based on a reduction to learning with label noise, using the forward correction (FC) loss of Patrini et al. [30]. We establish an excess risk bound and generalization error analysis for our approach, while also extending the theory of the FC loss which may be of independent interest. Our approach demonstrates improved empirical performance in deep learning scenarios across multiple datasets and architectures, compared to the leading methods.more » « less
-
With the prevalence of machine learning in many high-stakes decision-making processes, e.g., hiring and admission, it is important to take fairness into account when practitioners design and deploy machine learning models, especially in scenarios with imperfectly labeled data. Multiple-Instance Learning (MIL) is a weakly supervised approach where instances are grouped in labeled bags, each containing several instances sharing the same label. However, current fairness-centric methods in machine learning often fall short when applied to MIL due to their reliance on instance-level labels. In this work, we introduce a Fair Multiple-Instance Learning (FMIL) framework to ensure fairness in weakly supervised learning. In particular, our method bridges the gap between bag-level and instance-level labeling by leveraging the bag labels, inferring high-confidence instance labels to improve both accuracy and fairness in MIL classifiers. Comprehensive experiments underscore that our FMIL framework substantially reduces biases in MIL without compromising accuracy.more » « less