skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2309785

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. Free, publicly-accessible full text available August 1, 2026
  3. This paper addresses the challenge of constructing finite element curl div complexes in three dimensions. Tangential-normal continuity is introduced in order to develop distributional finite element curl div complexes. The spaces constructed are applied to discretize the quad curl problem, demonstrating optimal order of convergence. Furthermore, a hybridization technique is proposed, demonstrating its equivalence to nonconforming finite elements and weak Galerkin methods. 
    more » « less
    Free, publicly-accessible full text available June 30, 2026
  4. In the field of solving partial differential equations (PDEs), Hilbert complexes have become highly significant. Recent advances focus on creating new complexes using the Bernstein-Gelfand-Gelfand (BGG) framework, as shown by Arnold and Hu [Found. Comput. Math. 21 (2021), pp. 1739–1774]. This paper extends their approach to three-dimensional finite element complexes. The finite element Hessian, elasticity, and divdiv complexes are systematically derived by applying techniques such as smooth finite element de Rham complexes, the t t - n n decomposition, and trace complexes, along with related two-dimensional finite element analogs. The construction includes two reduction operations and one augmentation operation to address continuity differences in the BGG diagram, ultimately resulting in a comprehensive and effective framework for constructing finite element complexes, which have various applications in PDE solving. 
    more » « less
    Free, publicly-accessible full text available February 28, 2026
  5. The heavy-ball momentum method accelerates gradient descent with a momentum term but lacks accelerated convergence for general smooth strongly convex problems. This work introduces the Accelerated Over-Relaxation Heavy-Ball (AOR-HB) method, the first variant with provable global and accelerated convergence for such problems. AOR-HB closes a long-standing theoretical gap, extends to composite convex optimization and min-max problems, and achieves optimal complexity bounds. It offers three key advantages: (1) broad generalization ability, (2) potential to reshape acceleration techniques, and (3) conceptual clarity and elegance compared to existing methods. 
    more » « less
    Free, publicly-accessible full text available January 22, 2026
  6. A unified construction of H(div)-conforming finite element tensors, including vector element, symmetric matrix element, traceless matrix element, and, in general, tensors with linear constraints, is developed in this work. It is based on the geometric decomposition of Lagrange elements into bubble functions on each sub-simplex. Each tensor at a sub-simplex is further decomposed into tangential and normal components. The tangential component forms the bubble function space, while the normal component characterizes the trace. Some degrees of freedom can be redistributed to (n-1)-dimensional faces. The developed finite element spaces are H(div)-conforming and satisfy the discrete inf-sup condition. Intrinsic bases of the constraint tensor space are also established. 
    more » « less
  7. A new H(divdiv)-conforming finite element is presented, which avoids the need for supersmoothness by redistributing the degrees of freedom to edges and faces. This leads to a hybridizable mixed method with superconvergence for the biharmonic equation. Moreover, new finite element divdiv complexes are established. Finally, new weak Galerkin and C0 discontinuous Galerkin methods for the biharmonic equation are derived. 
    more » « less
  8. Finite element de Rham complexes and finite element Stokes complexes with varying degrees of smoothness in three dimensions are systematically constructed in this paper. Smooth scalar finite elements in three dimensions are derived through a non-overlapping decomposition of the simplicial lattice. H(div)-conforming finite elements and H(curl)-conforming finite elements with varying degrees of smoothness are devised based on these smooth scalar finite elements. The finite element de Rham complexes with corresponding smoothness and commutative diagrams are induced by these elements. The div stability of the H(div)-conforming finite elements is established, and the exactness of these finite element complexes is proven. 
    more » « less