skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Energy-Efficient Dispatching of Battery Electric Truck Fleets with Backhauls and Time Windows
The adoption of battery electric trucks (BETs) as a replacement for diesel trucks has potential to significantly reduce greenhouse gas emissions from the freight transportation sector. However, BETs have shorter driving range and lower payload capacity, which need to be taken into account when dispatching them. This article addresses the energy-efficient dispatching of BET fleets, considering backhauls and time windows. To optimize vehicle utilization, customers are categorized into two groups: linehaul customers requiring deliveries, where the deliveries need to be made following the last-in-first-out principle, and backhaul customers requiring pickups. The objective is to determine a set of energy-efficient routes that integrate both linehaul and backhaul customers while considering factors such as limited driving range, payload capacity of BETs, and the possibility of en route recharging. We formulate the problem as a mixed-integer linear programming model and propose an algorithm that combines adaptive large neighborhood search and simulated annealing metaheuristics to solve it. The effectiveness of the proposed strategy is demonstrated through extensive experiments using a real-world case study from a logistics company in Southern California. The results indicate that the proposed strategy leads to a significant reduction in total energy consumption compared to the baseline strategy, ranging from 11% to 40%, while maintaining reasonable computational time. In addition, the proposed strategy provides solutions that are better than or comparable with those obtained by other metaheuristics. This research contributes to the development of sustainable transportation solutions in the freight sector by providing a novel approach for dispatching BET fleets. The findings emphasize the potential of deploying BETs to achieve energy savings and advance the goal of green logistics.  more » « less
Award ID(s):
2152258
PAR ID:
10510618
Author(s) / Creator(s):
; ;
Publisher / Repository:
SAE International
Date Published:
Journal Name:
SAE International Journal of Electrified Vehicles
Volume:
13
Issue:
1
ISSN:
2691-3747
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The battery electric truck (BET) has emerged as a promising solution to reduce greenhouse gas emissions in urban logistics, given the current strict environmental regulations. This research explores the formulation and solution of the bi-objective BET dispatching problem with backhauls and time windows, aiming to simultaneously reduce environmental impacts and enhance the efficiency of urban logistics. From the sustainability perspective, one of the objectives is to minimize total energy costs, which include energy consumption and battery replacement expenses. On the other hand, from an economic perspective, the other objective is the minimization of labor costs. To solve this bi-objective BET dispatching problem, we propose an innovative approach, integrating an adaptive large neighborhood search-based metaheuristics algorithm with a multi-objective optimization strategy. This integration enables the exploration of the trade-off between fleet energy expenses and labor costs, optimizing the dispatching decisions for BETs. To validate the proposed dispatching strategy, extensive experiments were conducted using real-world fleet operations data from a logistics fleet in Southern California. The results demonstrated that the proposed approach yields a set of Pareto solutions, showcasing its effectiveness in finding a balance between energy efficiency and labor costs in urban logistics systems. The findings of this research contribute to advancing sustainable urban logistics practices and provide valuable insights for fleet operators in effectively managing BET fleets to reduce environmental impacts while maintaining economic efficiency. 
    more » « less
  2. The emergence of battery electric trucks (BETs) in recent years has shown great promise in reducing greenhouse gas (GHG) emissions in urban freight logistics. However, designing a customer-oriented dispatching strategy for a BET fleet is more complex than traditional vehicle routing problems (VRP) due to several constraints, such as limited driving range, potential need for en route recharging, and long recharging times. Also, in practice, the uncertain travel times in urban transportation network may lead to the violation of scheduled customer time windows and impact overall energy consumption. To better utilize the BET fleet, this paper introduces a robust BET dispatching problem with backhauls and time windows under travel time uncertainty, which aims to minimize the overall fleet energy consumption while also minimizing the risk of violating customer time window. A mathematical optimization model based on novel route-related sets is developed, and an adaptive large neighborhood search (ALNS) metaheuristic algorithm is used to find robust dispatching solutions. Based on real-world data from a truck fleet in San Bernardino County, California, a simulation study is conducted to demonstrate the robustness of the solutions obtained by the proposed method. Moreover, a sensitivity analysis with respect to uncertainty parameters is performed to assess the trade-off between the overall fleet energy consumption and the robustness of the solutions. 
    more » « less
  3. PurposeElectric trucks and platooning are promising technologies to reduce greenhouse gas emissions in the freight sector. To maximize the benefits of these two technologies, effective coordination of charging and platooning is essential, especially considering insufficient charging stations (CSs), long charging duration and tight freight delivery window for middle-mile electric trucks. Therefore, this paper aims to jointly optimize the scheduling of charging and platooning of electric trucks over the freight transportation network. Design/methodology/approachThis paper proposes a mixed integer linear programming model to minimize the total costs from en-route charging, depot charging, and delivery delay. This also presents scenario analyses to understand the impacts of key features on system costs, including battery capacity, number of charging plugs at CSs, charging speed, availability of alternative paths and platoon energy-saving percentage. To solve the model with a large fleet size, a warm-start-based parameter-tuned solver approach, and hybrid metaheuristics of variable neighborhood search and local branching were implemented and compared based on performance. FindingsThe proposed model was implemented using the freight network in Florida. In a case study with a small fleet size, platoon scheduling reduced 19% of en-route charging cost and 30% of delivery delay cost compared with the case of only charge scheduling. Electric trucks were charged around three times with an average duration of 35 min per session to facilitate platoon scheduling and minimize the total cost. Originality/valuePrevious models optimized charging and platoon scheduling for single routes that cannot be generalized for network level and multiple origin-destination pairs; this study addresses network-level optimization. 
    more » « less
  4. Efforts to decarbonize the heavy-duty vehicle sector have generated vast interest in transitioning from conventional diesel trucks to battery electric trucks (BETs). As a result, understanding energy consumption characteristics of BETs has become important for a variety of applications, for instance, assessing the feasibility of deploying BETs in place of conventional diesel trucks, predicting the state-of-charge (SOC) of BETs after specific duty cycles, and managing BET charging needs at the home base or en-route. For these applications, mesoscopic energy consumption models offer a good balance between the amount and fidelity of the input data needed, such as average traffic speed and road grade on a link-by-link basis, and the model performance. As a common intelligent transportation system (ITS) application, this paper presents a comparative assessment of mesoscopic energy consumption models for BETs developed using three different machine learning techniques. The results show that the random forest (RF) regression outperforms the extreme gradient boosting (XGBoost), the light gradient boosting machine (LightGBM), as well as the conventional linear regression as evidenced by the resulting model having a higher coefficient of determination (R2) value than that of its counterparts. When applied to the simulated dataset, the RF regression can capture the behaviors of BET energy consumption well where the R2 value of the resulting model is 0.94. 
    more » « less
  5. Even though heavy-duty battery electric trucks (BETs) have become commercially available, their range limitation still hinders widespread adoption. Drayage has been regarded as a suitable application for early BETs due to typically having limited daily mileage. However, drayage operation can vary widely and some form of range extension may still be needed for BETs operating in this application. In this paper, wireless charging at port terminals is proposed for this purpose. Potential wireless charging zones at port terminals are identified, and efficacy of wireless charging to extend BET range in drayage operation is verified by simulating the activity of20 BETs from a drayage operator serving the ports of Los Angeles and Long Beach, using a microscopic BET energy consumption model. Furthermore, an optimization problem is formulated for optimal wireless charging zone planning from the port authority's perspective, considering subsets of the identified zones, and charging power options to choose from, for different budget ranges. In this context, zone planning means determining which areas of the port terminals should be selected for installing wireless charging systems, and what level of charging power should be for each selected zone's system. For each budget range, the optimization problem is solved using genetic algorithm to determine an optimal zone plan that provides the maximum amount of energy through wireless charging per unit cost of installation. The results show that wireless charging can aid improving activity completion of the simulated fleet by 5%, and further optimizing the zone plan can achieve similar performance with lower cost. 
    more » « less