skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Application of Wireless Charging at Seaports for Range Extension of Drayage Battery Electric Trucks
Even though heavy-duty battery electric trucks (BETs) have become commercially available, their range limitation still hinders widespread adoption. Drayage has been regarded as a suitable application for early BETs due to typically having limited daily mileage. However, drayage operation can vary widely and some form of range extension may still be needed for BETs operating in this application. In this paper, wireless charging at port terminals is proposed for this purpose. Potential wireless charging zones at port terminals are identified, and efficacy of wireless charging to extend BET range in drayage operation is verified by simulating the activity of20 BETs from a drayage operator serving the ports of Los Angeles and Long Beach, using a microscopic BET energy consumption model. Furthermore, an optimization problem is formulated for optimal wireless charging zone planning from the port authority's perspective, considering subsets of the identified zones, and charging power options to choose from, for different budget ranges. In this context, zone planning means determining which areas of the port terminals should be selected for installing wireless charging systems, and what level of charging power should be for each selected zone's system. For each budget range, the optimization problem is solved using genetic algorithm to determine an optimal zone plan that provides the maximum amount of energy through wireless charging per unit cost of installation. The results show that wireless charging can aid improving activity completion of the simulated fleet by 5%, and further optimizing the zone plan can achieve similar performance with lower cost.  more » « less
Award ID(s):
2152258
PAR ID:
10511104
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
IEEE Transactions on Vehicular Technology
Volume:
73
Issue:
4
ISSN:
0018-9545
Page Range / eLocation ID:
4599 to 4609
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Efforts to decarbonize the heavy-duty vehicle sector have generated vast interest in transitioning from conventional diesel trucks to battery electric trucks (BETs). As a result, understanding energy consumption characteristics of BETs has become important for a variety of applications, for instance, assessing the feasibility of deploying BETs in place of conventional diesel trucks, predicting the state-of-charge (SOC) of BETs after specific duty cycles, and managing BET charging needs at the home base or en-route. For these applications, mesoscopic energy consumption models offer a good balance between the amount and fidelity of the input data needed, such as average traffic speed and road grade on a link-by-link basis, and the model performance. As a common intelligent transportation system (ITS) application, this paper presents a comparative assessment of mesoscopic energy consumption models for BETs developed using three different machine learning techniques. The results show that the random forest (RF) regression outperforms the extreme gradient boosting (XGBoost), the light gradient boosting machine (LightGBM), as well as the conventional linear regression as evidenced by the resulting model having a higher coefficient of determination (R2) value than that of its counterparts. When applied to the simulated dataset, the RF regression can capture the behaviors of BET energy consumption well where the R2 value of the resulting model is 0.94. 
    more » « less
  2. California has set a goal for all drayage trucks operating in the state to be zero-emitting by 2035. In order to achieve this goal, drayage operators would need to transition 100% of their Heets to zero-emission vehicles such as battery electric trucks (BETs). This article presents an intelligently controlled charging model for BETs that minimizes charging costs while optimizing subsequent tour completion. To develop this model, real-world activity data from a drayage truck Heet operating in Southern California was combined with a two-stage clustering technique to identify trip and tour patterns. The energy consumption for each trip and tour was then simulated for BETs with a battery capacity of 565 kWh using a 150 kW charging power level. Home base charging load profiles were generated using the proposed charging model, subject to constraints of the energy needed to complete the next subsequent tour and Time-of-Use energy cost rates. A sensitivity analysis evaluated three scenarios: a passive scenario with a 5% state-of-charge (SOC) constraint after completing the subsequent tour, an average scenario with a 50% SOC constraint, and an aggressive scenario with an 80% SOC constraint. Results indicated that the 80% SOC constraint scenario achieved the lowest charging cost. However, it also yielded the lowest tour completion rate (51%). In contrast, the 5% SOC constraint scenario registered the highest tour completion rate. These results revealed that 96% of the tours could be successfully completed using the intelligently controlled charging model. The remaining tours were infeasible, indicating that the available time at the home base was inadequate for charging the necessary energy for the next tour. In terms of total costs, the scenario with a 5% SOC constraint resulted in an annual cost of approximately $40,000, whereas the 80% SOC scenario nearly doubled that amount. 
    more » « less
  3. Charging infrastructure is the coupling link between power and transportation networks, thus determining charging station siting is necessary for planning of power and transportation systems. While previous works have either optimized for charging station siting given historic travel behavior, or optimized fleet routing and charging given an assumed placement of the stations, this paper introduces a linear program that optimizes for station siting and macroscopic fleet operations in a joint fashion. Given an electricity retail rate and a set of travel demand requests, the optimization minimizes total cost for an autonomous EV fleet comprising of travel costs, station procurement costs, fleet procurement costs, and electricity costs, including demand charges. Specifically, the optimization returns the number of charging plugs for each charging rate (e.g., Level 2, DC fast charging) at each candidate location, as well as the optimal routing and charging of the fleet. From a case-study of an electric vehicle fleet operating in San Francisco, our results show that, albeit with range limitations, small EVs with low procurement costs and high energy efficiencies are the most cost-effective in terms of total ownership costs. Furthermore, the optimal siting of charging stations is more spatially distributed than the current siting of stations, consisting mainly of high-power Level 2 AC stations (16.8 kW) with a small share of DC fast charging stations and no standard 7.7kW Level 2 stations. Optimal siting reduces the total costs, empty vehicle travel, and peak charging load by up to 10%. 
    more » « less
  4. null (Ed.)
    Wireless Charging Highways (WCHs) have been introduced by industry and academia to enable charging-while-driving for electric vehicles (EVs) and to combat range anxiety. While detailed planning and performance evaluation of such systems are crucial due to high cost and long life expectancy, most existing works assume a perfect communication environment. In this paper, we introduce a joint capacity model that takes into account both power and communication resources for WCH construction planning, and optimal day-to-day operation. The vehicle-to-infrastructure (V2I) communication and grid power capacities, along with the EV’s average service rate are formulated following technology requirements, EV speed-density characteristics, and the EV’s energy needs and consumption. In addition, a two-dimension Markov chain-based model is designed to capture the WCH power and connectivity dynamics. The proposed model can be used to calculate the system’s Quality of Service (QoS) and profit, provide design insights, and assess the impact of speed regulation, or admission control on the WCH lane. Finally, the performance of the proposed model is evaluated using real US highway data with the results demonstrating its ability to accurately capture the service provision dynamics, and to identify trade-offs between system parameters. 
    more » « less
  5. We present strategies for realizing a swarm of mobile relays to provide a bi-directional wireless network that connects fixed terminals. Neither terminals or relays are permitted to transmit into disk-shaped no-transmission zones. We assume a planar environment and that each transmission area is a disk centered at the transmitter. We seek a strongly connected network between all terminals with minimal total cost, where the cost is the sum area of the transmission disks.Results for networks with increasing levels of complexity are provided. The solutions for local networks containing low numbers of relays and terminals are applied to larger networks. For more complex networks, algorithms for a minimum-spanning tree (MST) based procedure are implemented to reduce the solution cost. 
    more » « less