skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Universal Modeling Framework for Real and Virtual Energy Storage
Energy storage equivalent circuit models are commonly used in design as they represent various physics or chemistries in a way familiar to power system engineers. However, the wide variety of employed circuits makes it challenging to identify the capability and transient response of energy storage and convolutes the comparison of storage options. Virtual energy storage, an aggregation of controllable loads, also currently lacks a modeling approach analogous to real storage. This paper proposes a universal energy storage model that represents both real and virtual storage—abstracting away the virtual storage power electronics while maintaining the system dynamics. This work demonstrates how the universal model can represent virtual energy storage and how existing battery and supercapacitor models can convert into the universal model. A comparison to switching models demonstrates the efficacy of the proposed universal model.  more » « less
Award ID(s):
2146350
PAR ID:
10510784
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Journal Name:
2023 IEEE Energy Conversion Congress and Exposition (ECCE)
ISSN:
2329-3748
ISBN:
979-8-3503-1644-5
Page Range / eLocation ID:
208 to 215
Format(s):
Medium: X
Location:
Nashville, TN, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Self‐powered untethered robots that can meander unrestrictedly, squeeze into small spaces, and operate in diverse harsh environments have received immense attention in recent years. As there is not a universal solution that can be applied to power robots with diverse forms, service functions, and a broad size range from nanometers to meters, the design, fabrication, and implementation of power systems with a suitable weight, desired power and operation duration, and adaptiveness to confined spaces and operation conditions represent one of the greatest challenges in robotic research. Herein, an overview of recent progress and challenges in developing the next‐generation energy harvesting and storage technologies is provided, including direct energy harvesting, energy storage and conversion, and wireless energy transmission for robots across all scales. 
    more » « less
  2. Abstract Residential solar installations are becoming increasingly popular among homeowners. However, renters and homeowners living in shared buildings cannot go solar as they do not own the shared spaces. Community-owned solar arrays and energy storage have emerged as a solution, which enables ownership even when they do not own the property or roof. However, such community-owned systems do not allow individuals to control their share for optimizing a home’s electricity bill. To overcome this limitation, inspired by the concept of virtualization in operating systems, we propose virtual community-owned solar and storage—a logical abstraction to allow individuals to independently control their share of the system. We argue that such individual control can benefit all owners and reduce their reliance on grid power. We present mechanisms and algorithms to provide a virtual solar and battery abstraction to users and understand their cost benefits. In doing so, our comparison with a traditional community-owned system shows that our AutoShare approach can achieve the same global savings of 43% while providing independent control of the virtual system. Further, we show that independent energy sharing through virtualization provides an additional 8% increase in savings to individual owners. 
    more » « less
  3. Climate extremes, such as hurricanes, combined with large-scale integration of environment-sensitive renewables, could exacerbate the risk of widespread power outages. We introduce a coupled climate-energy model for cascading power outages, which comprehensively captures the impacts of climate extremes on renewable generation, and transmission and distribution networks. The model is validated with the 2022 Puerto Rico catastrophic blackout during Hurricane Fiona – a unique system-wide blackout event with complete records of weather-induced outages. The model reveals a resilience pattern that was not captured by the previous models: early failure of certain critical components enhances overall system resilience. Sensitivity analysis on various scenarios of behind-the-meter solar integration demonstrates that lower integration levels (below 45%, including the current level) exhibit minimal impact on system resilience in this event. However, surpassing this critical level without pairing it with energy storage can exacerbate the probability of catastrophic blackouts. 
    more » « less
  4. The fast-growing installation of solar PVs has a significant impact on the operation of distribution systems. Grid-tied solar inverters provide reactive power capability to support the voltage profile in a distribution system. In comparison with traditional inverters, smart inverters have the capability of real time remote control through digital communication interfaces. However, cyberattack has become a major threat with the deployment of Information and Communications Technology (ICT) in a smart grid. The past cyberattack incidents have demonstrated how attackers can sabotage a power grid through digital communication systems. In the worst case, numerous electricity consumers can experience a major and extended power outage. Unfortunately, tracking techniques are not efficient for today’s advanced communication networks. Therefore, a reliable cyber protection system is a necessary defense tool for the power grid. In this paper, a signature-based Intrusion Detection System (IDS) is developed to detect cyber intrusions of a distribution system with a high level penetration of solar energy. To identify cyberattack events, an attack table is constructed based on the Temporal Failure Propagation Graph (TFPG) technique. It includes the information of potential cyberattack patterns in terms of attack types and time sequence of anomaly events. Once the detected anomaly events are matched with any of the predefined attack patterns, it is judged to be a cyberattack. Since the attack patterns are distinguishable from other system failures, it reduces the false positive rate. To study the impact of cyberattacks on solar devices and validate the performance of the proposed IDS, a realistic Cyber-Physical System (CPS) simulation environment available at Virginia Tech (VT) is used to develop an interconnection between the cyber and power system models. The CPS model demonstrates how communication system anomalies can impact the physical system. The results of two example cyberattack test cases are obtained with the IEEE 13 node test feeder system and the power system simulator, DIgSILENT PowerFactory. 
    more » « less
  5. Energy storage can generate significant revenue by taking advantage of fluctuations in real-time energy market prices. In this paper, we investigate the real-time price arbitrage potential of aerodynamic energy storage in wind farms. This under-explored source of energy storage can be realized by deferring energy extraction by turbines toward the front of a farm for later extraction by downstream turbines. In large wind farms, this kinetic energy can be stored for minutes to tens of minutes, depending on the inter-turbine travel distance and the incoming wind speed. This storage mechanism requires minimal capital costs for implementation and potentially could provide additional revenue to wind farm operators. We demonstrate that the potential for revenue generation depends on the energy arbitrage (storage) efficiency and the wind travel time between turbines. We then characterize how price volatility and arbitrage efficiency affect real-time energy market revenue potential. Simulation results show that when price volatility is low, which is the historic norm, noticeably increased revenue is only achieved with high arbitrage efficiencies. However, as price volatility increases, which is expected in the future as the composition of the power system evolves, revenues increase by several percent. 
    more » « less