skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seeking a Au–C stretch on gold nanoparticles with 13 C-labeled N-heterocyclic carbenes
Gold nanoparticles were functionalized with natural abundance and13C-labeled N-heterocyclic carbenes (NHCs) to investigate the Au–C stretch.  more » « less
Award ID(s):
2312222 2108330 2108328
PAR ID:
10510998
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
The Royal Society of Chemistry
Date Published:
Journal Name:
Chemical Communications
Volume:
59
Issue:
98
ISSN:
1359-7345
Page Range / eLocation ID:
14524 to 14527
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Paired measurements of14C/12C and230Th ages from two Hulu Cave stalagmites complete a precise record of atmospheric14C covering the full range of the14C dating method (~54,000 years). Over the last glacial period, atmospheric14C/12C ranges from values similar to modern values to values 1.70 times higher (42,000 to 39,000 years ago). The latter correspond to14C ages 5200 years less than calibrated ages and correlate with the Laschamp geomagnetic excursion followed by Heinrich Stadial 4. Millennial-scale variations are largely attributable to Earth’s magnetic field changes and in part to climate-related changes in the oceanic carbon cycle. A progressive shift to lower14C/12C values between 25,000 and 11,000 years ago is likely related, in part, to progressively increasing ocean ventilation rates. 
    more » « less
  2. Abstract The first cobalt‐catalyzed cross‐coupling of aryl tosylates with alkyl and aryl Grignard reagents is reported. The catalytic system uses CoF3and NHCs (NHC=N‐heterocyclic carbene) as ancillary ligands. The reaction proceeds via highly selective C−O bond functionalization, leading to the corresponding products in up to 98 % yield. The employment of alkyl Grignard reagents allows to achieve a rare C(sp2)−C(sp3) cross‐coupling of C−O electrophiles, circumventing isomerization and β‐hydride elimination problems. The use of aryl Grignards leads to the formation of biaryls. The C−O cross‐coupling sets the stage for a sequential cross‐coupling by exploiting the orthogonal selectivity of the catalytic system. 
    more » « less
  3. Abstract Herein, we demonstrate “direct”13C hyperpolarization of13C‐acetate via signal amplification by reversible exchange (SABRE). The standard SABRE homogeneous catalyst [Ir‐IMes; [IrCl(COD)(IMes)], (IMes=1,3‐bis(2,4,6‐trimethylphenyl), imidazole‐2‐ylidene; COD=cyclooctadiene)] was first activated in the presence of an auxiliary substrate (pyridine) in alcohol. Following addition of sodium 1‐13C‐acetate, parahydrogen bubbling within a microtesla magnetic field (i.e. under conditions of SABRE in shield enables alignment transfer to heteronuclei, SABRE‐SHEATH) resulted in positive enhancements of up to ≈100‐fold in the13C NMR signal compared to thermal equilibrium at 9.4 T. The present results are consistent with a mechanism of “direct” transfer of spin order from parahydrogen to13C spins of acetate weakly bound to the catalyst, under conditions of fast exchange with respect to the13C acetate resonance, but we find that relaxation dynamics at microtesla fields alter the optimal matching from the traditional SABRE‐SHEATH picture. Further development of this approach could lead to new ways to rapidly, cheaply, and simply hyperpolarize a broad range of substrates (e.g. metabolites with carboxyl groups) for various applications, including biomedical NMR and MRI of cellular and in vivo metabolism. 
    more » « less
  4. Abstract We report the synthesis and spectroscopic characterization of a series of iron‐carbene complexes in redox states {Fe=C(H)Ar}10–11. Pulse EPR studies of the1,2H and13C isotopologues of {Fe=C(H)Ar}11reveal the high covalency of the Fe–carbene bonding, leading to a more even spin distribution than commonly observed for reduced Fischer carbenes. 
    more » « less
  5. Abstract Electrochemical approaches to form C(sp2)−C(sp3) bonds have focused on coupling C(sp3) electrophiles that form stabilized carbon‐centered radicals upon reduction or oxidation. Whereas alkyl bromides are desirable C(sp3) coupling partners owing to their availability and cost‐effectiveness, their tendency to undergo radical‐radical homocoupling makes them challenging substrates for electroreductive cross‐coupling. Herein, we disclose a metal‐free regioselective cross‐coupling of 1,4‐dicyanobenzene, a useful precursor to aromatic nitriles, and alkyl bromides. Alkyl bromide reduction is mediated directly by 1,4‐dicyanobenzene radical anions, leading to negligible homocoupling and high cross‐selectivity to form 1,4‐alkyl cyanobenzenes. The cross‐coupling scheme is compatible with oxidatively sensitive and acidic functional groups such as amines and alcohols, which have proven difficult to incorporate in alternative electrochemical approaches using carboxylic acids as C(sp3) precursors. 
    more » « less