skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fabric anisotropy effects on static liquefaction under constant shear drained loading
Several case history failures of slope systems have highlighted that the instability onset in loose materials can be triggered under prevailed drained conditions and stress paths that can be represented by constant shear drained (CSD) loading. This study uses the anisotropic critical state theory (ACST) to assess the effect of fabric anisotropy and loading characteristics (e.g., Lode angle and principal stress direction) on the instability onset under CSD stress paths, comparing our numerical-based observations with available experimental information. Towards this end, the ACST-based SANISAND-F model’s performance under CSD stress paths is also assessed. In addition, multiaxial conditions are incorporated through the estimation of instability surfaces. The numerical simulations are useful in explaining that the instability onset under CSD loading is dictated by a trade-off of volumetric strain components. Moreover, the results show an important effect of fabric anisotropy on the instability stress ratio (𝜂𝑓 ). For conditions representative of common experimental setups, 𝜂𝑓 decreases with the increase of the Lode angle and the major principal stress inclination, and 𝜂𝑓 increases with the increase of initial fabric intensity, consistent with available experimental evidence. However, these trends can change based on the interaction between the Lode angle and loading/fabric directions; hence, departing from typical experimental observations. Finally, we discuss the potential of a simplified approach to estimate 𝜂𝑓 analytically, including fabric effects.  more » « less
Award ID(s):
2013947
PAR ID:
10511051
Author(s) / Creator(s):
; ;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Computers and Geotechnics
Volume:
163
Issue:
C
ISSN:
0266-352X
Page Range / eLocation ID:
105724
Subject(s) / Keyword(s):
Static liquefactionAnisotropic critical state theoryInstability onsetConstant Shear Drained (CSD)Fabric anisotropy
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The onset of static liquefaction in anisotropically consolidated soils is of relevance in assessing the performance of geotechnical systems. Previous studies have also highlighted the role of inherent soil fabric. This study derives an analytical instability criterion for granular materials under undrained loading by using the relatively new anisotropic critical state theory (ACST). The criterion is established using the SANISAND-F model, and it is amenable to incorporating consolidation anisotropy and fabric effects. We assess different numerical strategies for simulating the instability onset on materials sheared from initially anisotropic conditions. Our assessments indicate that simulations that consider consolidation followed by shear better represent the response observed in laboratory tests. It is observed that the degree of anisotropic consolidation has no significant effect on the instability stress ratio, but a very high degree of anisotropic consolidation results in a spontaneous collapse. It is also observed that the anisotropic consolidated specimens have a higher instability stress ratio in triaxial compression than in triaxial extension, highlighting the effect of loading direction relative to the existing fabric. 
    more » « less
  2. Static liquefaction has been associated with the failure of several tailing storage facilities (e.g., the Brumadinho failure in 2019) and has been a persistent topic of discussion in the mining and tailings communities. Experimental studies have suggested that the onset of static liquefaction is dependent on the initial state (void ratio and confinement) and fabric anisotropy. In this context, traditional constitutive models developed under the critical state theory (CST) have been used to investigate the onset of static liquefaction for several complex loading paths. However, these models do not capture the effect of soil fabric anisotropy (inherent and induced) that are relevant in field conditions. In this study, the Anisotropic Critical State Theory (ACST) framework is used to assess the onset of static liquefaction in particulate materials, incorporating the effects of inherent and induced fabric. Our assessments derive an analytical criterion to assess static liquefaction that can be applied to screening assessments. The derived analytical criterion is a function of material properties, state, and fabric anisotropy, which couple the effects of fabric and loading direction. The use of the derived criteria in particulate materials is illustrated, and the implications of assessing the static liquefaction of mine tailings under generalized loading is also discussed. 
    more » « less
  3. Calibration and validation of constitutive models and numerical modeling techniques used in analysis of soil liquefaction and its effects are often based on extensive comparisons with the results of element tests and centrifuge experiments. While good quality experimental data are available to understand and quantify the stress-strain-strength response of liquefiable soils in monotonic and cyclic drained/undrained element (triaxial and direct simple shear) tests, the results of these experiments are often less repeatable when the soil approaches liquefaction state and relatively large deviatoric strains suddenly develop within a few cycles of loading. The main source of these less repeatable patterns of soil behavior appears to be instability rather than the attainment of a state of material failure. The goal of this paper is to investigate the role of instability on the stress-strain response of liquefiable soils by using a critical state sand plasticity model that is enriched with an internal length scale representing the potential shear bands that may develop during monotonic or cyclic loading conditions. Through a series of numerical simulations, it is shown that the global stress-strain response measured in the element tests is a good approximation of the soil constitutive response before an unstable condition such as shear banding or liquefaction develops in the soil specimen. 
    more » « less
  4. null (Ed.)
    Abstract Experimental evidence shows that the strength of granular soils is significantly influenced by inherent cross anisotropy which cannot be properly described by isotropic failure criteria. This paper reviewed laboratory test results of various sands at different fabric directions. Based on the observations, this paper formulates the hypothesis that deposit plane creates a plane of weakness and the anisotropic strength of sands depends on orientations of deposit plane and failure plane. The strength decreases when orientations of deposit plane and failure plane are close to each other, and the strength increase when they diverge from each other. Then, an anisotropic failure criterion is developed based on this hypothesis and validated by available experimental data from literature. Remarkable agreements between predictions and measurements have been observed, which demonstrate validity, effectiveness, and robustness of new criterion in characterizing anisotropic strength of sands with variations of loading directions and intermediate principal stresses. 
    more » « less
  5. A phase-field model for thermomechanically-induced fracture in NiTi at the single crystal level, i.e., fracture under loading paths that may take advantage of either of the functional properties of NiTi–superelasticity or shape memory effect–, is presented, formulated within the kinematically linear regime. The model accounts for reversible phase transformation from austenite to martensite habit plane variants and plastic deformation in the austenite phase. Transformation-induced plastic deformation is viewed as a mechanism for accommodation of the local deformation incompatibility at the austenite–martensite interfaces and is accounted for by introducing an interaction term in the free energy derived based on the Mori–Tanaka and Kröner micromechanical assumptions and the hypothesis of martensite instantaneous growth within austenite. Based on experimental observations suggesting that NiTi fractures in a stress-controlled manner, damage is assumed to be driven by the elastic energy, i.e., phase transformation and plastic deformation are assumed to contribute in crack formation and growth indirectly through stress redistribution. The model is restricted to quasistatic mechanical loading (no latent heat effects), thermal loading sufficiently slow with respect to the time rate of heat transfer by conduction (no thermal gradients), and a temperature range below 𝑀𝑑, which is the temperature above which the austenite phase is stable, i.e., stress-induced martensitic transformation is suppressed. The numerical implementation of the model is based on an efficient scheme of viscous regularization in both phase transformation and plastic deformation, an explicit numerical integration via a tangent modulus method, and a staggered scheme for the coupling of the unknown fields. The model is shown able to capture transformation-induced toughening, i.e., stable crack advance attributed to the shielding effect of inelastic deformation left in the wake of the growing crack under nominal isothermal loading, actuation-induced fracture under a constant bias load, and crystallographic dependence on crack pattern. 
    more » « less