skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2203607

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The stable reduction theorem says that a family of curves of genus$$g\ge 2$$ g 2 over a punctured curve can be uniquely completed (after possible base change) by inserting certain stable curves at the punctures. We give a new this result for curves defined over$${\mathbb {C}}$$ C , using the Kähler–Einstein metrics on the fibers to obtain the limiting stable curves at the punctures. 
    more » « less
  2. Abstract We construct Kähler–Einstein metrics with negative scalar curvature near an isolated log canonical (non-log terminal) singularity.Such metrics are complete near the singularity if the underlying space has complex dimension 2. We also establish a stability result for Kähler–Einstein metrics near certain types of isolated log canonical singularity. As application, for complex dimension 2 log canonical singularity, we show that any complete Kähler–Einstein metric of negative scalar curvature near an isolated log canonical (non-log terminal) singularity is smoothly asymptotically close to model Kähler–Einstein metrics from hyperbolic geometry. 
    more » « less
  3. Free, publicly-accessible full text available June 1, 2026
  4. We continue our work on the linear theory for equations with conical singularities. We derive interior Schauder estimates for linear elliptic and parabolic equations with a background Kähler metric of conical singularities along a divisor of simple normal crossings. As an application, we prove the short-time existence of the conical Kähler–Ricci flow with conical singularities along a divisor with simple normal crossings. 
    more » « less