Abstract Nanomaterial‐based stretchable electronics composed of conductive nanomaterials in elastomer can seamlessly integrate with human skin to imperceptibly capture electrophysiological signals. Despite the use of transfer printing to form embedded structures, it remains challenging to facilely and stably integrate conductive nanomaterials with thin, low‐modulus, adhesive elastomers. Here, a facile‐yet‐simple laser‐induced graphene (LIG)‐assisted patterning and transfer method is demonstrated to integrate patterned silver nanowires onto an ultra‐low modulus silicone adhesive as ultra‐conformal epidermal electrodes. The resulting thin epidermal electrodes of ≈50 µm exhibit a low sheet resistance (0.781 Ω sq−1), tissue‐like Young's modulus (0.53 MPa), strong self‐adhesion, and excellent breathability. The breathable electrodes dynamically conformed to the skin with low contact impedance allow for long‐term, high‐fidelity monitoring of electrophysiological signals in complex environments (even during exercise and heavy sweating). Moreover, the LIG‐assisted transfer can provide a robust interface to establish a stable connection between the soft electrodes and rigid hardware. The large‐scale fabrication further provides an eight‐channel electromyography system combined with a deep learning algorithm for gesture classification and recognition with remarkable accuracy (95.4%). The results from this study also provide design guidelines and fabrication methods of the next‐generation epidermal electronics for long‐term dynamic health monitoring, prosthetic control, and human‐robot collaborations.
more »
« less
Direct Laser Processing and Functionalizing PI/PDMS Composites for an On‐Demand, Programmable, Recyclable Device Platform
Abstract Skin‐interfaced high‐sensitive biosensing systems to detect electrophysiological and biochemical signals have shown great potential in personal health monitoring and disease management. However, the integration of 3D porous nanostructures for improved sensitivity and various functional composites for signal transduction/processing/transmission often relies on different materials and complex fabrication processes, leading to weak interfaces prone to failure upon fatigue or mechanical deformations. The integrated system also needs additional adhesive to strongly conform to the human skin, which can also cause irritation, alignment issues, and motion artifacts. This work introduces a skin‐attachable, reprogrammable, multifunctional, adhesive device patch fabricated by simple and low‐cost laser scribing of an adhesive composite with polyimide powders and amine‐based ethoxylated polyethylenimine dispersed in the silicone elastomer. The obtained laser‐induced graphene in the adhesive composite can be further selectively functionalized with conductive nanomaterials or enzymes for enhanced electrical conductivity or selective sensing of various sweat biomarkers. The possible combination of the sensors for real‐time biofluid analysis and electrophysiological signal monitoring with RF energy harvesting and communication promises a standalone stretchable adhesive device platform based on the same material system and fabrication process.
more »
« less
- Award ID(s):
- 2309323
- PAR ID:
- 10511347
- Publisher / Repository:
- Wiley
- Date Published:
- Journal Name:
- Advanced Materials
- ISSN:
- 0935-9648
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wearable sweat biosensors offer compelling opportunities for improved personal health monitoring and non-invasive measurements of key biomarkers. Inexpensive device fabrication methods are necessary for scalable manufacturing of portable, disposable, and flexible sweat sensors. Furthermore, real-time sweat assessment must be analyzed to validate measurement reliability at various sweating rates. Here, we demonstrate a “smart bandage” microfluidic platform for cortisol detection and continuous glucose monitoring integrated with a synthetic skin. The low-cost, laser-cut microfluidic device is composed of an adhesive-based microchannel and solution-processed electrochemical sensors fabricated from inkjet-printed graphene and silver solutions. An antibody-derived cortisol sensor achieved a limit of detection of 10 pM and included a low-voltage electrowetting valve, validating the microfluidic sensor design under typical physiological conditions. To understand effects of perspiration rate on sensor performance, a synthetic skin was developed using soft lithography to mimic human sweat pores and sweating rates. The enzymatic glucose sensor exhibited a range of 0.2 to 1.0 mM, a limit of detection of 10 μM, and reproducible response curves at flow rates of 2.0 μL min −1 and higher when integrated with the synthetic skin, validating its relevance for human health monitoring. These results demonstrate the potential of using printed microfluidic sweat sensors as a low-cost, real-time, multi-diagnostic device for human health monitoring.more » « less
-
Stress is one of the main causes that increase the risk of serious health problems. Recent wearable devices have been used to monitor stress levels via electrodermal activities on the skin. Although many biosensors provide adequate sensing performance, they still rely on uncomfortable, partially flexible systems with rigid electronics. These devices are mounted on either fingers or palms, which hinders a continuous signal monitoring. A fully‐integrated, stretchable, wireless skin‐conformal bioelectronic (referred to as “SKINTRONICS”) is introduced here that integrates soft, multi‐layered, nanomembrane sensors and electronics for continuous and portable stress monitoring in daily life. The all‐in‐one SKINTRONICS is ultrathin, highly soft, and lightweight, which overall offers an ergonomic and conformal lamination on the skin. Stretchable nanomembrane electrodes and a digital temperature sensor enable highly sensitive monitoring of galvanic skin response (GSR) and temperature. A set of comprehensive signal processing, computational modeling, and experimental study provides key aspects of device design, fabrication, and optimal placing location. Simultaneous comparison with two commercial stress monitors captures the enhanced performance of SKINTRONICS in long‐term wearability, minimal noise, and skin compatibility. In vivo demonstration of continuous stress monitoring in daily life reveals the unique capability of the soft device as a real‐world applicable stress monitor.more » « less
-
The skin exhibits nonlinear mechanics, which is initially soft and stiffens rapidly as being stretched to prevent large deformation‐induced injuries. Developing skin‐interfaced bioelectronics with skin‐inspired nonlinear mechanical behavior, together with multiple other desired features (breathable, antibacterial, and sticky), is desirable yet challenging. Herein, this study reports the design, fabrication, and biomedical application of porous mesh bioelectronics that can simultaneously achieve these features. On the one hand, porous serpentine meshes of polyimide (PI) are designed and fabricated under the guidance of theoretical simulations to provide skin‐like nonlinear mechanics and high breathability. On the other hand, ultrasoft, sticky, and antibacterial polydimethylsiloxane (PDMS) is developed through epsilon polylysine (ε‐PL) modifications, which are currently lacking in the field. Here,ε‐PL‐modified PDMS is spray‐coated on PI meshes to form the core–shell structures without blocking their pores to offer ultrasoft, sticky, and antibacterial skin interfaces. And rationally designed porous hybrid meshes can not only retain skin‐like nonlinear mechanical properties but also enable the integration of both soft and hard bioelectronic components for various healthcare applications. As the exemplar example, this study integrates soft silver nanowires (AgNWs) based electrophysiological sensors and rigid commercial accelerometers on multifunctional porous meshes for concurrently monitoring heart electrical and mechanical functions to provide comprehensive information on the evolving heart status.more » « less
-
Abstract Dysphagia or difficulty swallowing is caused by the failure of neurological pathways to properly activate swallowing muscles. Current electromyography (EMG) systems for dysphagia monitoring are bulky and rigid, limiting their potential for long‐term and unobtrusive use. To address this, a machine learning‐assisted wearable EMG system is presented, utilizing self‐adhesive, skin‐conformal, semi‐transparent, and robust ionic gel electrodes. The presented electrodes possess good conductivity, superior skin contact, and good transmittance, ensuring high‐fidelity EMG sensing without impeding daily activities. Moreover, the optimized material and structural designs ensure wearing comfort and conformable skin‐electrode contact, allowing for long‐term monitoring with high accuracy. Machine learning and mel‐frequency cepstral coefficient techniques are employed to classify swallowing events based on food types and volumes. Through an analysis of electrode placement on the chin and neck, the proposed system is able to effectively distinguish between different food types and water volumes using a small number of channels, making it suitable for continuous dysphagia monitoring. This work represents an advancement in machine learning assisted EMG systems for the classification and regression of swallowing events, paving the way for more efficient, unobtrusive, and long‐term dysphagia monitoring systems.more » « less
An official website of the United States government

