skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A design and analysis of computer experiments based mixed integer linear programming approach for optimizing a system of electric vehicle charging stations
This paper formulates a mixed integer linear programming (MILP) model to optimize a system of electric vehicle (EV) charging stations. Our methodology introduces a two-stage framework that integrates the first-stage system design problem with a second-stage control problem of the EV charging stations and develops a design and analysis of computer experiments (DACE) based system design optimization solution method. Our DACE approach generates a metamodel to predict revenue from the control problem using multivariate adaptive regression splines (MARS), fit over a binned Latin hypercube (LH) experimental design. Comparing the DACE based approach to using a commercial solver on the MILP, it yields near optimal solutions, provides interpretable profit functions, and significantly reduces computational time for practical application.  more » « less
Award ID(s):
1938895
PAR ID:
10511507
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Lin, Binshan
Publisher / Repository:
Expert Systems With Applications
Date Published:
Journal Name:
Expert Systems with Applications
Volume:
245
Issue:
C
ISSN:
0957-4174
Page Range / eLocation ID:
123064
Subject(s) / Keyword(s):
Design and Analysis of Computer-Experiments Electric Vehicle Charging Stations Latin Hypercube Sampling Mixed Integer Linear Programming Multivariate Adaptive Regression-Splines
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As electric vehicles (EVs) gradually replace fuel vehicles and provide transportation services in cities, e.g., electric taxi fleets, solar-powered charging stations with energy storage systems have been deployed to provide charging services for EV fleets. The mixture of solar-powered and traditional charging stations brings efficiency challenges to charging stations and reliability challenges to power systems. In this article, we explore e-taxis’ mobility and charging demand flexibility to co-optimize service quality of e-taxi fleets and system cost of charging infrastructures, e.g., solar power under-utilization and reliability issues of power distribution networks due to reverse power flow. We propose SAC, an e-taxi coordination framework to dispatch e-taxis for charging or serving passengers under spatial-temporal dynamics of renewable energy and passenger mobility, which integrates the renewable power generation estimation from a forecast system. Moreover, we extend our design to a stochastic Model Predictive Control problem to handle the uncertainty of solar power generation, aiming to fully utilize generated solar power. Our data-driven evaluation shows that SAC significantly outperforms existing solutions, enhancing the usage rate of solar power by up to 172.6%, while maintaining e-taxi service quality with very small overhead, i.e., reducing the supply-demand ratio by 2.2%. 
    more » « less
  2. Unfolder-based quasi-single-stage ac-dc power converter has been widely used for high-power electric vehicle (EV) charging systems for its high efficiency and power density. However, the resonance between the grid inductance (impedance) and the capacitors on the soft-dc-link of the converter impacts the system stability and significantly limits the system control bandwidth and dynamic response performance. A quasi-single-stage ac-dc converter with unfolder plus T-bridge series resonant converter (T-SRC) is studied in this work. The small-signal modeling and plant transfer function derivation of the T-SRC is presented in this paper. A damping filter design using the extra element theorem (EET) is then proposed to achieve high- bandwidth and stable operation of the quasi-single-stage ac-dc converter. Simulation and hardware results from an 18 kW module for high-power EV charging are provided to validate the proposed modeling and damping filter design. 
    more » « less
  3. By displacing gasoline and diesel fuels, electric cars and fleets offer significant public health benefits by reducing emissions from the transportation sector. However, public confidence in the reliability of charging infrastructure remains a fundamental barrier to adoption. Using large-scale social data and machine learning based on 12,720 U.S. electric vehicle charging stations, we provide national evidence on how well the existing charging infrastructure is serving the needs of the expanding population of EV drivers in 651 core-based statistical areas in the United States. Contrary to predictions, we find that stations at private charging locations do not outperform public charging locations provided by government. We also find evidence of higher negative sentiment in the dense urban centers, where issues of charge rage and congestion may be the most prominent. Overall, 40% of drivers using mobility apps have faced negative experiences at EV charging stations, a problem that needs to be fixed as the market expands. 
    more » « less
  4. null (Ed.)
    We introduce and study a general version of the fractional online knapsack problem with multiple knapsacks, heterogeneous constraints on which items can be assigned to which knapsack, and rate-limiting constraints on the assignment of items to knapsacks. This problem generalizes variations of the knapsack problem and of the one-way trading problem that have previously been treated separately, and additionally finds application to the real-time control of electric vehicle (EV) charging. We introduce a new algorithm that achieves a competitive ratio within an additive factor of one of the best achievable competitive ratios for the general problem and matches or improves upon the best-known competitive ratio for special cases in the knapsack and one-way trading literatures. Moreover, our analysis provides a novel approach to online algorithm design based on an instance-dependent primal-dual analysis that connects the identification of worst-case instances to the design of algorithms. Finally, we illustrate the proposed algorithm via trace-based experiments of EV charging. 
    more » « less
  5. The number of electric vehicles (EV) has increased significantly in the past decades due to its advantages including emission reduction and improved energy efficiency. However, the adoption of EV could lead to overloading the grid and degrading the power quality of the distribution system. It also demands an increase in the number of EV charging stations. To meet the charging needs of 15 million EVs by the year 2030 with limited charging stations, prediction of charging needs, and reallocating charging resources are in emerging needs. In this study, long short-term memory (LSTM) and autoregressive and moving average models (ARMA) models were applied to predict charging loads with temporal profiles from 3 charging stations. Prediction accuracy was applied to evaluate the performance of the models. The LSTM models demonstrated a significant performance improvement compared to ARMA models. The results from this study lay a foundation to efficiently manage charge resources. 
    more » « less