Recent work has shown that introducing higher-curvature terms to the Einstein-Hilbert action causes the approach to a space-like singularity to unfold as a sequence of Kasner eons. Each eon is dominated by emergent physics at an energy scale controlled by higher-curvature terms of a given order, transitioning to higher-order eons as the singularity is approached. The purpose of this paper is twofold. First, we demonstrate that the inclusion of matter dramatically modifies the physics of eons compared to the vacuum case. We illustrate this by considering a family of quasi-topological gravities of arbitrary order minimally coupled to a scalar field. Second, we investigate Kasner eons in the interior of black holes with field theory duals and analyze their imprints on holographic observables. We show that the behavior of the thermala-function, two-point functions of heavy operators, and holographic complexity can capture distinct signatures of the eons, making them promising tools for diagnosing stringy effects near black hole singularities.
more »
« less
Boundary signature of singularity in the presence of a shock wave
Matter falling into a Schwarzschild-AdS black hole from the left causes increased focussing of ingoing geodesics from the right, and, as a consequence, they reach the singularity sooner. In a standard Penrose diagram, the singularity “bends down”. We show how to detect this feature of the singularity holographically, using a boundary two-point function. We model the matter with a shock wave, and show that this bending down of the singularity can be read off from a novel analytic continuation of the boundary two-point function. Along the way, we obtain a generalization of the recently proposed thermal product formula for two-point correlators.
more »
« less
- Award ID(s):
- 2107939
- PAR ID:
- 10511676
- Publisher / Repository:
- SciPost Physics
- Date Published:
- Journal Name:
- SciPost Physics
- Volume:
- 16
- Issue:
- 2
- ISSN:
- 2542-4653
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
It is usually assumed that matter disappears together with the spacetime at the center of a Schwarzschild black hole (BH). Here, we find that if we impose a boundary condition that the field does not disappear at the BH center (that is, field flux into the singularity vanishes), the BH acts as a time mirror that totally reflects the infalling light and matter outside the BH. Namely, the reflected field propagates backward in time, passes the event horizon and moves away from the BH. In this case, a BH can be used as a time machine that allows us to send a signal into the past. We also show that de Sitter spacetime acts as a time mirror provided particles do not disappear from the spacetime at r=∞.more » « less
-
Abstract We present a family of high-order trapezoidal rule-based quadratures for a class of singular integrals, where the integrand has a point singularity. The singular part of the integrand is expanded in a Taylor series involving terms of increasing smoothness. The quadratures are based on the trapezoidal rule, with the quadrature weights for Cartesian nodes close to the singularity judiciously corrected based on the expansion. High-order accuracy can be achieved by utilizing a sufficient number of correction nodes around the singularity to approximate the terms in the series expansion. The derived quadratures are applied to the implicit boundary integral formulation of surface integrals involving the Laplace layer kernels.more » « less
-
Under the correspondence, asymptotically anti–de Sitter geometries with backreaction can be viewed as conformal field theory states subject to a renormalization group (RG) flow from an ultraviolet (UV) description toward an infrared (IR) sector. For black holes, however, the IR point is the horizon, so one way to interpret the interior is as an analytic continuation to a “trans-IR” imaginary-energy regime. In this paper, we demonstrate that this analytic continuation preserves some imprints of the UV physics, particularly near its “end point” at the classical singularity. We focus on holographic phase transitions of geometric objects in round black holes. We first assert the consistency of interpreting such black holes, including their interiors, as RG flows by constructing a monotonic function. We then explore how UV phase transitions of entanglement entropy and scalar two-point functions, each of which are encoded by bulk geometry under the holographic mapping, are related to the structure of the near-singularity geometry, which is quantified by Kasner exponents. Using 2D holographic flows triggered by relevant scalar deformations as test beds, we find that the 3D bulk’s near-singularity Kasner exponents can be viewed as functions of the UV physics precisely when the deformation is nonzero. Published by the American Physical Society2024more » « less
-
Lorentzian correlators of local operators exhibit surprising singularities in theories with gravity duals. These are associated with null geodesics in an emergent bulk geometry. We analyze singularities of the thermal response function dual to propagation of waves on the AdS Schwarzschild black hole background. We derive the analytic form of the leading singularity dual to a bulk geodesic that winds around the black hole. Remarkably, it exhibits a boundary group velocity larger than the speed of light, whose dual is the angular velocity of null geodesics at the photon sphere. The strength of the singularity is controlled by the classical Lyapunov exponent associated with the instability of nearly bound photon orbits. In this sense, the bulk-cone singularity can be identified as the universal feature that encodes the ubiquitous black hole photon sphere in a dual holographic CFT. To perform the computation analytically, we express the two-point correlator as an infinite sum over Regge poles, and then evaluate this sum using WKB methods. We also compute the smeared correlator numerically, which in particular allows us to check and support our analytic predictions. We comment on the resolution of black hole bulk-cone singularities by stringy and gravitational effects into black hole bulk-cone “bumps”. We conclude that these bumps are robust, and could serve as a target for simulations of black hole-like geometries in table-top experiments.more » « less
An official website of the United States government

