Predicting the evolution of burned area, smoke emissions, and energy release from wildfires is crucial to air quality forecasting and emergency response planning yet has long posed a significant scientific challenge. Here we compare predictions of burned area and fire radiative power from the coupled weather/fire‐spread model WRF‐Fire (Weather and Research Forecasting Tool with fire code), against simpler methods typically used in air quality forecasts. We choose the 2019 Williams Flats Fire as our test case due to a wealth of observations and ignite the fire on different days and under different configurations. Using a novel re‐gridding scheme, we compare WRF‐Fire's heat output to geostationary satellite data at 1‐hr temporal resolution. We also evaluate WRF‐Fire's time‐resolved burned area against high‐resolution imaging from the National Infrared Operations aircraft data. Results indicate that for this study, accounting for containment efforts in WRF‐Fire simulations makes the biggest difference in achieving accurate results for daily burned area predictions. When incorporating novel containment line inputs, fuel density increases, and fuel moisture observations into the model, the error in average daily burned area is 30% lower than persistence forecasting over a 5‐day forecast. Prescribed diurnal cycles and those resolved by WRF‐Fire simulations show a phase offset of at least an hour ahead of observations, likely indicating the need for dynamic fuel moisture schemes. This work shows that with proper configuration and input data, coupled weather/fire‐spread modeling has the potential to improve smoke emission forecasts.
This content will become publicly available on April 20, 2025
- Award ID(s):
- 2313174
- NSF-PAR ID:
- 10511791
- Publisher / Repository:
- SIAM
- Date Published:
- Journal Name:
- SIAM International Conference on Data Mining (SDM24)
- Subject(s) / Keyword(s):
- prescribed fire modeling knowledge-guided machine learning probabilistic graphical model surrogate model
- Format(s):
- Medium: X
- Location:
- Houston, TX
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Fuel break effectiveness in wildland-urban interface (WUI) is not well understood during downslope wind-driven fires even though various fuel treatments are conducted across the western United States. The aim of this paper is to examine the efficacy of WUI fuel breaks under the influence of strong winds and dry fuels, using the 2018 Camp Fire as a case study. The operational fire growth model Prometheus was used to show: (1) downstream impacts of 200 m and 400 m wide WUI fuel breaks on fire behavior and evacuation time gain; (2) how the downstream fire behavior was affected by the width and fuel conditions of the WUI fuel breaks; and (3) the impacts of background wind speeds on the efficacy of WUI fuel breaks. Our results indicate that WUI fuel breaks may slow wildfire spread rates by dispersing the primary advancing fire front into multiple fronts of lower intensity on the downstream edge of the fuel break. However, fuel break width mattered. We found that the lateral fire spread and burned area were reduced downstream of the 400 m wide WUI fuel break more effectively than the 200 m fuel break. Further sensitivity tests showed that wind speed at the time of ignition influenced fire behavior and efficacy of management interventions.more » « less
-
Abstract. We present the Fire Inventory from National Center for Atmospheric Research (NCAR) version 2.5 (FINNv2.5), a fire emissions inventory that provides publicly available emissions of trace gases and aerosols for various applications, including use in global and regional atmospheric chemistry modeling. FINNv2.5 includes numerous updates to the FINN version 1 framework to better represent burned area, vegetation burned, and chemicals emitted. Major changes include the use of active fire detections from the Visible Infrared Imaging Radiometer Suite (VIIRS) at 375 m spatial resolution, which allows smaller fires to be included in the emissions processing. The calculation of burned area has been updated such that a more rigorous approach is used to aggregate fire detections, which better accounts for larger fires and enables using multiple satellite products simultaneously for emissions estimates. Fuel characterization and emissions factors have also been updated in FINNv2.5. Daily fire emissions for many trace gases and aerosols are determined for 2002–2019 (Moderate Resolution Imaging Spectroradiometer (MODIS)-only fire detections) and 2012–2019 (MODIS + VIIRS fire detections). The non-methane organic gas emissions are allocated to the species of several commonly used chemical mechanisms. We compare FINNv2.5 emissions against other widely used fire emissions inventories. The performance of FINNv2.5 emissions as inputs to a chemical transport model is assessed with satellite observations. Uncertainties in the emissions estimates remain, particularly in Africa and South America during August–October and in southeast and equatorial Asia in March and April. Recommendations for future evaluation and use are given.
-
Abstract Downslope wind‐driven fires have resulted in many of the wildfire disasters in the western United States and represent a unique hazard to infrastructure and human life. We analyze the co‐occurrence of wildfires and downslope winds across the western United States (US) during 1992–2020. Downslope wind‐driven fires accounted for 13.4% of the wildfires and 11.9% of the burned area in the western US yet accounted for the majority of local burned area in portions of southern California, central Washington, and the front range of the Rockies. These fires were predominantly ignited by humans, occurred closer to population centers, and resulted in outsized impacts on human lives and infrastructure. Since 1999, downslope wind‐driven fires have accounted for 60.1% of structures and 52.4% of human lives lost in wildfires in the western US. Downslope wind‐driven fires occurred under anomalously dry fuels and exhibited a seasonality distinct from other fires—occurring primarily in the spring and fall. Over 1992–2020, we document a 25% increase in the annual number of downslope wind‐driven fires and a 140% increase in their respective annual burned area, which partially reflects trends toward drier fuels. These results advance our understanding of the importance of downslope winds in driving disastrous wildfires that threaten populated regions adjacent to mountain ranges in the western US. The unique characteristics of downslope wind‐driven fires require increased fire prevention and adaptation strategies to minimize losses and incorporation of changing human‐ignitions, fuel availability and dryness, and downslope wind occurrence to elucidate future fire risk.
-
Abstract Agricultural and prescribed burning activities emit large amounts of trace gases and aerosols on regional to global scales. We present a compilation of emission factors (EFs) and emission ratios from the eastern portion of the Fire Influence on Regional to Global Environments and Air Quality (FIREX‐AQ) campaign in 2019 in the United States, which sampled burning of crop residues and other prescribed fire fuels. FIREX‐AQ provided comprehensive chemical characterization of 53 crop residue and 22 prescribed fires. Crop residues burned at different modified combustion efficiencies (MCE), with corn residue burning at higher MCE than other fuel types. Prescribed fires burned at lower MCE (<0.90) which is typical, while grasslands burned at lower MCE (0.90) than normally observed due to moist, green, growing season fuels. Most non‐methane volatile organic compounds (NMVOCs) were significantly anticorrelated with MCE except for ethanol and NMVOCs that were measured with less certainty. We identified 23 species where crop residue fires differed by more than 50% from prescribed fires at the same MCE. Crop residue EFs were greater for species related to agricultural chemical use and fuel composition as well as oxygenated NMVOCs possibly due to the presence of metals such as potassium. Prescribed EFs were greater for monoterpenes (5×). FIREX‐AQ crop residue average EFs generally agreed with the previous agricultural fire study in the US but had large disagreements with global compilations. FIREX‐AQ observations show the importance of regionally‐specific and fuel‐specific EFs as first steps to reduce uncertainty in modeling the air quality impacts of fire emissions.