skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Growing sabers: Mandibular shape and biomechanical performance trajectories during the ontogeny of Smilodon fatalis
Abstract The evolution of organisms can be studied through the lens of developmental systems, as the timing of development of morphological features is an important aspect to consider when studying a phenotype. Such data can be challenging to obtain in fossil amniotes owing to the scarcity of their fossil record. However, the numerous remains of Rancho La Brea allow a detailed study of the postnatal changes in an extinct sabertoothed felid:Smilodon fatalis. Despite numerous previous studies on the ontogeny ofSmilodon, an important question remained open: how did the cubs ofSmilodonacquire and process food? By applying 3D geometric morphometrics and finite element analyses to 49 mandibles at various developmental stages (22 ofS. fatalis, 23 ofPanthera leo, and 4 of early diverging felids), we assess the changes in mandibular shape and performance during growth. Both lions and sabertooths exhibit a shift in mandibular shape, aligning with eruption of the lower carnassial. This marks the end of weaning in lions and suggests a prolonged weaning period inS. fatalisowing to its delayed eruption sequence. We also highlight distinct ontogenetic trajectories, withS. fatalisundergoing more postnatal mandibular shape changes. Finally, althoughS. fatalisappears more efficient thanP. leoat performing an anchor bite, this efficiency is acquired through ontogeny and at a quite late age. The delayed shape change compared withP. leoand the low biting efficiency during the growth inSmilodoncould indicate an extended duration of the parental care compared withP. leo.  more » « less
Award ID(s):
2128146
PAR ID:
10511820
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
The Anatomical Record
Volume:
308
Issue:
11
ISSN:
1932-8486
Format(s):
Medium: X Size: p. 2976-2993
Size(s):
p. 2976-2993
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The canine of saber‐toothed predators represents one of the most specialized dental structures known. Hypotheses about the function of hypertrophied canines range from display and conspecific interaction, soft food processing, to active prey acquisition. Recent research on the ontogenetic timing of skull traits indicates the adult canine can take years to fully erupt, but the consequences of prolonged eruption on inferences of canine functional morphology are missing from current discourse and have not been quantified. Here I evaluate hypotheses about adult canine bending strength and stiffness, respectively, during eruption in the felidSmilodon fatalis. Simulated eruption sequences of three adult canines were generated from specimen models to assess shifting cross‐sectional geometry properties, and bending strength and stiffness under laterally directed loads were estimated using finite element analysis. Consistent with beam theory expectations,S. fataliscanine cross‐sectional geometry is optimized for increased bending strength with increased erupted height. However, canine cross‐sectional geometry changes through eruption exaggerate rather than minimize lateral deflection. Spatial constraint for maximum root length from adjacent sensory structures in the maxilla and the recently identified universal power law are hypothesized to limit the growth capacity of canine anteroposterior length and, consequently, maintenance of bending stiffness through eruption. Instead, the joint presence of the deciduous and adult canines for >50% of the adult canine eruption period effectively increases canine mediolateral width and brings bending strength and stiffness estimates closer to theoretical optima. Similarly prolonged retention of deciduous canines in other sabertooths suggests dual‐canine buttressing is a convergently evolved strategy to maximize bending strength and stiffness. 
    more » « less
  2. Abstract ObjectivesMagnitudes of morphological integration may constrain or facilitate craniofacial shape variation. The aim of this study was to analyze how the magnitude of integration in the skull ofMacaca fascicularischanges throughout ontogeny in relation to developmental and/or functional modules. Materials and methodsGeometric morphometric methods were used to analyze the magnitude of integration in the macaque cranium and mandible in 80 juvenile and 40 adultM. fascicularisspecimens. Integration scores in skull modules were calculated using integration coefficient of variation (ICV) of eigenvalues based on a resampling procedure. Resultant ICV scores between the skull as a whole, and developmental and/or functional modules were compared using Mann–WhitneyUtests. ResultsResults showed that most skull modules were more tightly integrated than the skull as a whole, with the exception of the chondrocranium in juveniles without canines, the chondrocranium/face complex and the mandibular corpus in adults, and the mandibular ramus in all juveniles. The chondrocranium/face and face/mandibular corpus complexes were more tightly integrated in juveniles than adults, possibly reflecting the influences of early brain growth/development, and the changing functional demands of infant suckling and later masticatory loading. This is also supported by the much higher integration of the mandibular ramus in adults compared with juveniles. DiscussionMagnitudes of integration in skull modules reflect developmental/functional mechanisms inM. fascicularis. However, the relationship between “evolutionary flexibility” and developmental/functional mechanisms was not direct or simple, likely because of the complex morphology, multifunctionality, and various ossification origins of the skull. 
    more » « less
  3. Abstract Cranial nerves are key features of the nervous system and vertebrate body plan. However, little is known about the anatomical relationships and ontogeny of cranial nerves in crocodylians and other reptiles, hampering understanding of adaptations, evolution, and development of special senses, somatosensation, and motor control of cranial organs. Here we share three dimensional (3D) models an of the cranial nerves and cranial nerve targets of embryonic, juvenile, and adult American Alligators (Alligator mississippiensis) derived from iodine‐contrast CT imaging, for the first time, exploring anatomical patterns of cranial nerves across ontogeny. These data reveal the tradeoffs of using contrast‐enhanced CT data as well as patterns in growth and development of the alligator cranial nervous system. Though contrast‐enhanced CT scanning allows for reconstruction of numerous tissue types in a nondestructive manner, it is still limited by size and resolution. The position of alligator cranial nerves varies little with respect to other cranial structures yet grow at different rates as the skull elongates. These data constrain timing of trigeminal and sympathetic ganglion fusion and reveal morphometric differences in nerve size and path during growth. As demonstrated by these data, alligator cranial nerve morphology is useful in understanding patterns of neurological diversity and distribution, evolution of sensory and muscular innervation, and developmental homology of cranial regions, which in turn, lead to inferences of physiology and behavior. 
    more » « less
  4. Abstract ObjectivesCortical bone geometry is commonly used to investigate biomechanical properties of primate mandibles. However, the ontogeny of these properties is less understood. Here we investigate changes in cortical bone cross‐sectional properties throughout capuchin ontogeny and compare captive versus wild, semi‐provisioned groups. Tufted capuchins (Sapajusspp.) are known to consume relatively hard/tough foods, while untufted capuchins (Cebusspp.) exploit less mechanically challenging foods. Previous research indicates dietary differences are present early in development and adultSapajusmandibles can resist higher bending/shear/torsional loads. Materials and methodsThis study utilized microCT scans of 22Cebusand 45Sapajusfrom early infancy to adulthood from three sample populations: one captiveCebus, one captiveSapajus, and one semi‐provisioned, free‐rangingSapajus. Mandibular cross‐sectional properties were calculated at the symphysis, P3, and M1. If the tooth had not erupted, its position within the crypt was used. A series of one‐way ANOVAs were performed to assess differences between and within the sample populations. ResultsMandible robusticity increases across ontogeny for all three sample populations.Sapajuswere better able to withstand bending and torsional loading even early in ontogeny, but no difference in shear resistance was found. Semi‐provisioned, free‐rangingSapajustend to show increased abilities to resist bending and torsional loading but not shear loading compared to captiveSapajus. DiscussionThis study helps advance our understanding of the primate masticatory system development and opens the door for further studies into adaptive plasticity in shaping the masticatory apparatus of capuchins and differences in captive versus free‐ranging sample populations. 
    more » « less
  5. ABSTRACT Crocodylians evolved some of the most characteristic skulls of the animal kingdom with specializations for semiaquatic and ambush lifestyles, resulting in a feeding apparatus capable of tolerating high biomechanical loads and bite forces and a head with a derived sense of trigeminal‐nerve‐mediated touch. The mandibular symphysis accommodates these specializations being both at the end of a biomechanical lever and an antenna for sensation. Little is known about the anatomy of the crocodylian mandibular symphysis, hampering our understanding of form, function, and evolution of the joint in extant and extinct lineages. We explore mandibular symphysis anatomy of an ontogenetic series ofAlligator mississippiensisusing imaging, histology, and whole mount methods. Complex sutural ligaments emanating about a midline‐fused Meckel's cartilage bridge the symphysis. These tissues organize during days 37–42 ofin ovodevelopment. However, interdigitations do not manifest until after hatching. These soft tissues leave a hub and spoke‐like bony morphology of the symphyseal plate, which never fuses. Interdigitation morphology varies within the symphysis suggesting differential loading about the joint. Neurovascular canals extend throughout the mandibles to alveoli, integument, and bone adjacent to the symphysis. These features suggest theAlligatormandibular symphysis offers compliance in an otherwise rigid skull. We hypothesize a fused Meckel's cartilage offers stiffness in hatchling mandibles prior to the development of organized sutural ligaments and mineralized bone while offering a scaffold for somatic growth. The porosity of the dentaries due to neurovascular tissues likely allows transmission of sensory and proprioceptive information from the surroundings and the loaded symphysis. Anat Rec, 302:1696–1708, 2019. © 2019 American Association for Anatomy 
    more » « less