Abstract Veins consisting primarily of biotite are the earliest stockwork vein type recognized at the Kuh-e Janja Cu-Au porphyry deposit in southeastern Iran. These early biotite veins may contain quartz and minor amounts of sulfide minerals such as chalcopyrite and pyrite. Observations at the hand-specimen scale do not provide reliable constraints on the paragenetic relationships, as the early biotite veins have been repeatedly overprinted during the evolution of the magmatic-hydrothermal system. Microscopic investigations show that the sulfide minerals in the early biotite veins are texturally late, providing evidence that sulfide deposition did not occur at the high temperatures of biotite formation and potassic alteration of the host rocks. Chalcopyrite primarily occurs along hairline fractures that crosscut or refracture the earlier biotite veins. Biotite in contact with the chalcopyrite can be apparently unaltered or is replaced by chlorite, depending on the degree of wall-rock buffering of the magmatic-hydrothermal fluids that caused hypogene Cu mineralization. The findings add to the growing body of evidence that Cu mineralization in this deposit type occurs at temperatures close to the transition from ductile to brittle conditions (<450°C) following a drop in the pressure regime from lithostatic to hydrostatic conditions.
more »
« less
Geology, mineralization and magma evolution of the Zuun Mod Mo-Cu deposit in Southwest Mongolia
Zuun Mod is a porphyry-type Mo-Cu deposit located in the Edren terrane in Southwest Mongolia. The deposit has estimated resources of 218 Mt with an average Mo grade of 0.057% and Cu grade of 0.069%, and significant amounts of Re. The deposit is characterized by multiple pulses of magmatism and exsolution of magmatic ore fluids and associated alteration and mineralization. The timing of these events and the tectonic environment were unconstrained, and the deposit’s origin remains controversial. Based on drill core and field examinations, four lithological units of the Bayanbulag intrusive complex are identified in the deposit area including quartz syenite, quartz monzonite, granodiorite, and granite. The majority of Mo mineralization at Zuun Mod occurs in sheeted and stockwork quartz veins that crosscut units of the Bayanbulag complex as well as disseminations within altered granitoids wherein the mineralized quartz veins occur with potassic and phyllic alteration selvages. Zircon U-Pb age dating for quartz monzonite and granodiorite defined the timing of magmatic events at 305.3 ± 3.6 Ma and 301.8 ± 2.7 Ma, respectively. Molybdenite Re-Os geochronology on grains from a quartz vein with potassic alteration selvage determined the age of Mo mineralization at 297 ± 4.8 Ma. Lithogeochemical data of intrusive units suggest the granitoid rocks show calc-alkaline to high-K calc-alkaline, I-type, and metaluminous to slightly peraluminous affinities that formed in a post-collisional setting and were likely sourced from subduction-modified lithosphere. Lithogeochemical signatures and the tectonic environment classify Zuun Mod into neither Climax nor Endako-types, but as a Mo-rich porphyry Cu deposit.
more »
« less
- PAR ID:
- 10512048
- Publisher / Repository:
- Elsevier
- Date Published:
- Journal Name:
- Journal of Asian Earth Sciences
- Volume:
- 257
- Issue:
- C
- ISSN:
- 1367-9120
- Page Range / eLocation ID:
- 105857
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Most known porphyry Cu deposits formed in the Phanerozoic and are exclusively associated with moderately oxidized, sulfur-rich, hydrous arc-related magmas derived from partial melting of the asthenospheric mantle metasomatized by slab-derived fluids. Yet, whether similar metallogenic processes also operated in the Precambrian remains obscure. Here we address the issue by investigating the origin, fO2, and S contents of calc-alkaline plutonic rocks associated with the Haib porphyry Cu deposit in the Paleoproterozoic Richtersveld Magmatic Arc (southern Namibia), an interpreted mature island-arc setting. We show that the ca. 1886–1881 Ma ore-forming magmas, originated from a mantle-dominated source with minor crustal contributions, were relatively oxidized (1‒2 log units above the fayalitemagnetite- quartz redox buffer) and sulfur-rich. These results indicate that moderately oxidized, sulfur-rich arc magma associated with porphyry Cu mineralization already existed in the late Paleoproterozoic, probably as a result of recycling of sulfate-rich seawater or sediments from the subducted oceanic lithosphere at that time.more » « less
-
Porphyry Cu ± Mo ± Au and iron oxide-apatite (IOA) deposits rarely occur in spatial and temporal proximity in Phanerozoic arc-related settings, and the formation of these mineral deposit types in an evolving arc setting remains poorly understood. Specifically, the roles of magma composition and the tectonic regime remain the subject of some debate. Here, we systematically estimated the P-T-fO2 conditions and H2O-S-Cl contents for dioritic to granodioritic source magmas for porphyry and skarn Cu ± Au (150–135 Ma) and IOA deposits (~130 Ma) that formed in transpressional and transtensional settings in the Middle-Lower Yangtze River metallogenic belt, China. Our estimates show that, compared to IOA deposits, the porphyry- and skarn-related magmas were relatively felsic, cooler, and more hydrous. These geochemical features are consistent with the tectonic transition from subduction to slab rollback of the paleo-Pacific plate in the East Asia continental margin at <135 Ma and concomitant crustal extension and steepening of the regional geothermal gradient. Apatite data reveal that the silicate melts associated with the porphyry and skarn Cu ± Au and IOA deposits had comparable predegassed S concentrations (~0.13 ± 0.06 wt % vs. ~0.16 ± 0.09 wt % on average), but that IOA-related melts contained higher predegassed Cl/H2O ratios (~0.11 ± 0.03 vs. ~0.04 ± 0.03 for porphyry- and skarn-related magmas) that decreased by one order of magnitude after magmatic degassing. Magmatic fO2 estimated using zircon and amphibole, reported in log units relative to the fayalite-magnetite-quartz (FMQ) redox buffer, gradually increased during cooling of the porphyry- and skarn-related magmas (ΔFMQ +0.7 to +2.5) at 950° to 800°C and decreased to ΔFMQ +1 at 700°C owing to fractionation of Fe2+-rich minerals and subsequent S degassing, respectively. In contrast, the magmatic fO2 values for the IOA-related source magmas varied significantly from ΔFMQ –1.5 to ΔFMQ +2.5 but generally show an increasing trend with cooling from 970° to 700°C that probably resulted from variable degrees of evaporite assimilation, fractionation of Fe2+-rich minerals, and Cl degassing. These results are consistent with the hypothesis that Cl enrichment of the IOA-related source magmas played a determinant role in their formation. We propose that the porphyry and skarn Cu ± Au deposits in the Middle-Lower Yangtze River metallogenic belt formed in a transpressional setting in response to paleo-Pacific flat-slab subduction that favored storage and evolution of S-rich hydrous ore-forming magmas at variable crustal levels. A subsequent extensional setting formed due to slab rollback, leading to rapid degassing of Cl-rich IOA-related magmas. For the latter scenario, assimilation of evaporite by mafic to intermediate magmas would lead to an enrichment of Cl in the predegassed magmas and subsequent exsolution of hypersaline magmatic-hydrothermal fluid enriched in Fe as FeCl2. This Fe-rich ore fluid efficiently transported Fe to the apical parts of the magma bodies and overlying extensional normal faults where IOA mineralization was localized. The concomitant loss of S, H2O, and Cu with Cl by volcanic outgassing may have inhibited sulfide mineralization at lower temperatures.more » « less
-
Abstract The Oligocene Latir magmatic center in northern New Mexico is an exceptionally well-exposed volcanoplutonic complex that hosts a variety of magmatic-hydrothermal deposits, ranging from relatively deep, F-rich porphyry Mo mineralization to shallower epithermal deposits. We present new whole-rock chemical and isotopic data for plutonic rocks from the Latir magmatic center, including extensive sampling of drill core samples of intrusive rocks from the Questa porphyry Mo deposit. These data document temporal chemical trends of porphyry-related mineralization that occurred after caldera-forming magmatism and during postcaldera batholith assembly. Silicic magmas were generated multiple times throughout the history of the Latir magmatic center, but few are associated with the formation of a mineral deposit. Whole-rock trace element ratios and Sr, Nd, and Pb isotope compositions vary throughout the protracted history of silicic magmatism. The caldera-forming ignimbrite and early phase of postcaldera intrusions are unmineralized, more enriched in high field strength elements, and generally contain less radiogenic Sr and Pb and more radiogenic Nd than later intrusions. The Questa porphyry Mo deposit formed immediately after the most isotopically primitive phase of the batholith was assembled, ruling out simple reworking of juvenile mantle-derived crust as the source for mineralizing magmas. Rhyolite dikes associated with polymetallic sulfide deposits intruded ~800 k.y. after Mo mineralization, and Nd isotope data indicate that these dikes are associated with different batches of magma and are unrelated to the Mo-mineralizing intrusions at the Questa mine. Together, these data indicate that the source of magmas changed significantly throughout the 10-m.y. history of the magmatic center. We assess multiple genetic models for porphyry-related magmatism against this data set, favoring models with discrete periods of magma genesis from a deep hybridized zone in the lower crust giving rise to the punctuated periods of mineralization. These observations suggest that the formation of mineral deposits within a central magmatic locus is likely the result of the piecemeal assembly of individual hydrothermal-magmatic systems, and that distal and younger polymetallic mineralization commonly observed near known porphyry deposits represents decoupled processes.more » « less
-
Most known porphyry Cu±Au deposits are associated with moderately oxidized and sulfur-rich, calc-alkaline to mildly alkalic arc-related magmas in the Phanerozoic. In contrast, sodium-enriched tonalite–trondhjemite–granodiorite–diorite (TTG) magmas predominant in the Archean are hypothesized to be unoxidized and sulfur-poor, which together preclude porphyry Cu deposit formation. Here, we test this hypothesis by interrogating the causative magmas for the ∼2·7 Ga TTG-related Côté Gold, St-Jude, and Clifford porphyry-type Cu±Au deposit settings in the Neoarchean southern Abitibi subprovince. New and previously published geochronological results constrain the age of emplacement of the causative magmas at ∼2·74 Ga, ∼2·70 Ga, and∼2·69 Ga, respectively. The dioritic and trondhjemitic magmas associated with Côté Gold and St-Jude evolved along a plagioclase-dominated fractionation trend, in contrast to amphibole-dominated fractionation for tonalitic magma at Clifford. Analyses of zircon grains from the Côté Gold, St-Jude, and Clifford igneous rocks yielded εHf(t)±SD values of 4·5±0·3, 4·2±0·6, and 4·3±0·4, and δ18O±SD values of 5·40±0·11 , 3·91±0·13 , and 4·83±0·12 , respectively. These isotopic signatures indicate that, although these magmas are mantle-sourced with minimal crustal contamination, for the St- Jude and Clifford settings the magmas or their sources may have undergone variable alteration by heated seawater or meteoric fluids. Primary barometric minerals (i.e. zircon, amphibole, apatite, and magnetite–ilmenite) that survived variable alteration and metamorphism (up to greenschist facies) were used for estimating fO2 of the causative magmas. Estimation of magmatic fO2 values, reported relative to the fayalite–magnetite–quartz buffer as FMQ, using zircon geochemistry indicates that the fO2 values of the St-Jude, Côté Gold, and Clifford magmas increase from FMQ –0·3±0·6 to FMQ +0·8±0·4 and to FMQ +1·2±0·4, respectively. In contrast, amphibole chemistry yielded systematically higher fO2 values of FMQ +1·6±0·3 and FMQ +2·6±0·1 for Côté Gold and Clifford, respectively, which are consistent with previous studies that indicate that amphibole may overestimate the fO2 of intrusive rocks by up to 1 log unit. Micro X-ray absorption near edge structure (μ-XANES) spectrometric determination of sulfur (i.e. S6+/ S) in primary apatite yielded ≥ FMQ−0·3 and FMQ+1·4–1·8 for St-Jude and Clifford, respectively. The magnetite–ilmenite mineral pairs from the Clifford tonalite yielded FMQ +3·3±1·3 at equilibrium temperatures of 634±21 ◦C, recording the redox state of the late stage of magma crystallization. Electron probe microanalyses revealed that apatite grains from Clifford are enriched in S (up to 0·1 wt%) relative to those of Côté Gold and St-Jude (below the detection limit), which is attributed to either relatively oxidized or sulfur-rich features of the Clifford tonalite. We interpret these results to indicate that the deposits at Côté Gold and Clifford formed from mildly (∼ FMQ +0·8±0·4) to moderately (∼ FMQ +1·5) oxidized magmas where voluminous early sulfide saturation was probably limited, whereas the St-Jude deposit represents a rare case whereby the ingress of externally derived hydrothermal fluids facilitated metal fertility in a relatively reduced magma chamber (∼ FMQ +0). Furthermore, we conclude that variable modes of formation for these deposits and, in addition, the apparent rarity of porphyry-type Cu–Au deposits in the Archean may be attributed to either local restriction of favorable metallogenic conditions, and/or preservation, or an exploration bias.more » « less
An official website of the United States government

