skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, October 10 until 2:00 AM ET on Friday, October 11 due to maintenance. We apologize for the inconvenience.


Title: Magnetic Reconnection and Associated Particle Acceleration in High-Energy Astrophysics
Abstract

Magnetic reconnection occurs ubiquitously in the universe and is often invoked to explain fast energy release and particle acceleration in high-energy astrophysics. The study of relativistic magnetic reconnection in the magnetically dominated regime has surged over the past two decades, revealing the physics of fast magnetic reconnection and nonthermal particle acceleration. Here we review these recent progresses, including the magnetohydrodynamic and collisionless reconnection dynamics as well as particle energization. The insights in astrophysical reconnection strongly connect to the development of magnetic reconnection in other areas, and further communication is greatly desired. We also provide a summary and discussion of key physics processes and frontier problems, toward a better understanding of the roles of magnetic reconnection in high-energy astrophysics.

 
more » « less
NSF-PAR ID:
10512192
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Science + Business Media
Date Published:
Journal Name:
Space Science Reviews
Volume:
220
Issue:
4
ISSN:
0038-6308
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Magnetic reconnection is an important source of energetic particles in systems ranging from astrophysics to the laboratory. The large separation of spatiotemporal scales involved makes it critical to determine the minimum physical model containing the necessary physics for modeling particle acceleration. By resolving the energy gain from ideal and nonideal magnetohydrodynamic electric fields self-consistently in kinetic particle-in-cell simulations of reconnection, we conclusively show the dominant role of the nonideal field for the early stage of energization known as injection. The importance of the nonideal field increases with magnetization, guide field, and in three dimensions, indicating its general importance for reconnection in natural astrophysical systems. We obtain the statistical properties of the injection process from the simulations, paving the way for the development of extended MHD models capable of accurately modeling particle acceleration in large-scale systems. The novel analysis method developed in this study can be applied broadly to give new insight into a wide range of processes in plasma physics.

     
    more » « less
  2. Abstract

    Particles are accelerated to very high, non-thermal energies during explosive energy-release phenomena in space, solar, and astrophysical plasma environments. While it has been established that magnetic reconnection plays an important role in the dynamics of Earth’s magnetosphere, it remains unclear how magnetic reconnection can further explain particle acceleration to non-thermal energies. Here we review recent progress in our understanding of particle acceleration by magnetic reconnection in Earth’s magnetosphere. With improved resolutions, recent spacecraft missions have enabled detailed studies of particle acceleration at various structures such as the diffusion region, separatrix, jets, magnetic islands (flux ropes), and dipolarization front. With the guiding-center approximation of particle motion, many studies have discussed the relative importance of the parallel electric field as well as the Fermi and betatron effects. However, in order to fully understand the particle acceleration mechanism and further compare with particle acceleration in solar and astrophysical plasma environments, there is a need for further investigation of, for example, energy partition and the precise role of turbulence.

     
    more » « less
  3. Abstract

    Magnetic reconnection in the relativistic regime has been proposed as an important process for the efficient production of nonthermal particles and high-energy emission. Using fully kinetic particle-in-cell simulations, we investigate how the guide-field strength and domain size affect the characteristic spectral features and acceleration processes. We study two stages of acceleration: energization up until the injection energyγinjand further acceleration that generates a power-law spectrum. Stronger guide fields increase the power-law index andγinj, which suppresses acceleration efficiency. These quantities seemingly converge with increasing domain size, suggesting that our findings can be extended to large-scale systems. We find that three distinct mechanisms contribute to acceleration during injection: particle streaming along the parallel electric field, Fermi reflection, and the pickup process. The Fermi and pickup processes, related to the electric field perpendicular to the magnetic field, govern the injection for weak guide fields and larger domains. Meanwhile, parallel electric fields are important for injection in the strong guide-field regime. In the post-injection stage, we find that perpendicular electric fields dominate particle acceleration in the weak guide-field regime, whereas parallel electric fields control acceleration for strong guide fields. These findings will help explain the nonthermal acceleration and emission in high-energy astrophysics, including black hole jets and pulsar wind nebulae.

     
    more » « less
  4. Abstract

    Magnetic reconnection and plasma turbulence are ubiquitous and key processes in the Universe. These two processes are suggested to be intrinsically related: magnetic reconnection can develop turbulence, and, in turn, turbulence can influence or excite magnetic reconnection. In this study, we report a rare and unique electron diffusion region (EDR) observed by the Magnetospheric Multiscale mission in the Earth’s magnetotail with significantly enhanced energetic particle fluxes. The EDR is in a region of strong turbulence within which the plasma density is dramatically depleted. We present three salient features. (1) Despite the turbulence, the EDR behaves nearly the same as that in 2D quasi-planar reconnection; the observations suggest that magnetic reconnection continues for several minutes. (2) The observed reconnection electric field and inferred energy transport are exceptionally large. However, the aspect ratio of the EDR (one definition of reconnection rate) is fairly typical. Instead, extraordinarily large-amplitude Hall electric fields appear to enable the strong energy transport. (3) We hypothesize that the high-energy transport rate, density depletion, and the strong particle acceleration are related to a near-runaway effect, which is due to the combination of low-plasma-density inflow (from lobes) and possible positive feedback between turbulence and reconnection. The detailed study on this EDR gives insight into the interplay between reconnection and turbulence, and the possible near-runaway effect, which may play an important role in other particle acceleration in astrophysical plasma.

     
    more » « less
  5. Abstract

    The past decade has seen an outstanding development of nonthermal particle acceleration in magnetic reconnection in magnetically dominated systems, with clear signatures of power-law energy distributions as a common outcome of first-principles kinetic simulations. Here we propose a semianalytical model for systematically investigating nonthermal particle acceleration in reconnection. We show particle energy distributions are well determined by particle injection, acceleration, and escape processes. Using a series of kinetic simulations, we accurately evaluate the energy- and time-dependent model coefficients. The resulting spectral characteristics, including the spectral index and lower and upper bounds of the power-law distribution, agree well with the simulation results. Finally, we apply the model to predict the power-law indices and break energies in astrophysical reconnection systems.

     
    more » « less